Discrete and Continuous Dynamical Systems

i

Al
doi:10.3934/dcds.2025015 \Q&

ON THE NUMBER OF POLES OF THE DYNAMICAL ZETA
FUNCTIONS FOR BILLIARD FLOW

VESSELIN PETKOVE

Université de Bordeaux, Institut de Mathématiques de Bordeaux,
351, Cours de la Libération, 33405 Talence, France

(Communicated by Enrique Pujals)

ABSTRACT. We study the number of the poles of the meromorphic continu-
ation of the dynamical zeta functions ny and np for several strictly convex
disjoint obstacles satisfying the non-eclipse condition. For 7y, we obtain a
strip {z € C : Res > 8} with infinitely many poles. For np, we prove the same
result assuming the boundary is real analytic. Moreover, for ny we obtain a
characterization of 8 by the pressure P(2G) of some function G on the space
EQ related to the dynamical characteristics of the obstacle.

1. Introduction. Let Dy,...,D, C R% r >3, d > 2, be compact strictly convex
disjoint obstacles with C* smooth boundary, and let D = U;zl D;. We assume
that every D; has non-empty interior and throughout this paper we suppose the
following non-eclipse condition:

Dy, N convex hull (D; U D;) = 0, (1)

for any 1 < 4,7,k < r such that i # k and j # k. Under this condition, all periodic
trajectories for the billiard flow in = R4\ D are ordinary reflecting ones without
tangent segments to the boundary of D. We consider the (non-grazing) billiard flow
¢t (see Section 2 for the definition). Next, the periodic trajectories will be called
periodic rays. For any periodic ray v, denote by 7(vy) > 0 its period, by 7¢(y) > 0
its primitive period, and by m(v) the number of reflections of v at the obstacles.
Denote by P, the associated linearized Poincaré map (see section 2.3 in [24] and
Section 2 for the definition). Let P be the set of all oriented periodic rays. Notice
that some periodic rays have only one orientation, while others admits two (see [4,
§2.3] for more details). Let II be the set of all primitive periodic rays. Then, the
counting function of the lengths of periodic rays satisfies

hx
Hyell: P(h) Sah~ T, @ 400, (2)

for some h > 0 (see for instance [20, Theorem 6.5] for weakly mixing suspension
symbolic flow, and [15] and [19]). Hence, there exists an infinite number of primitive
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2 VESSELIN PETKOV
periodic trajectories and applying (2), for every sufficiently small € > 0, one obtains
the estimate

elh—9z < HyeP: 7(y) <a} < et o> 0> 1.

Moreover, for some positive constants c1, Ct, f1 and f3, we have (see for instance
[21, Appendix]| and (A.1))

117 < |det(1d — P,)| < Cref2™™) ~ e P.
By using these estimates, define for Re (s) > 1 two Dirichlet series
T(7) Tﬁ (7)@757(7)
- —_1\)ym)
Z |det Id P )|1/2’ () =D (-1) |det(Id — P,)[1/2°

YEP

where the sums run over all oriented periodic rays. The length 7%(7), the period
7(7) and |det(Id — P,)|'/? are independent of the orientation of . We also consider
for ¢ > 1, ¢ € N, the zeta function

Tﬁ(y)efw(v)
= R 1.
ma(s) = 4 Z |det(Id — P,)|1/?’ es>
YEP,m(v)EqN

Clearly, ny(s) = n1(s). These zeta functions are important for the analysis of the
distribution of the scattering resonances related to the Laplacian in R? \ D with
Dirichlet and Neumann boundary conditions on 0D (see [4, §1] for more details).
It was proved in [4, Theorem 1.1 and Theorem 4.1] that n, has a meromorphic
continuation to C with simple poles and integer residues. We have the equality

np(s) = n2(s) —m(s), Res>1, (3)

hence 1p admits also a meromorphic continuation to C with simple poles and integer
residues. The functions 7,(s) are Dirichlet series with positive coefficients and by
a classical theorem of Landau (see for instance, [2, Théoreme 1, Chapitre IV]),
they have a pole s = a4, where a4 is the abscissa of convergence of 1,4(s). On the
other hand, from (3) it follows that some cancellations of poles are possible. In this
direction, for d = 2 [27] and for d > 3 under some conditions [29], Stoyanov proved
that there exists € > 0 such that np(s) is analytic for Res > a1 —e. The same result
has been proved for d = 3 and a; > 0 by Ikawa [16].

The purpose of this paper is to prove that 74(s) has an infinite number of poles
and to estimate 5 € R such that the number of poles with Re s > f is infinite. The
same questions are more difficult for np(s) since the existence of at least one pole
has been established only for obstacles with real analytic boundary [4, Theorem
1.3], and for obstacles with sufficiently small diameters [15], [28]. Clearly, a4 < a;.
We have ay = aq, since if ag < ap, the function np will have a singularity at aq
which is impossible because 7p is analytic for Re s > a3 (see [21, Theorem 1]).

Denote by Res 1, and Res n7p the set of poles of n, and np, respectively. We
prove the following theorem.

Theorem 1.1. For every 0 < § < 1, there exists o5,q < aq such that for o < o q,
we have

#{u; € Resny : Rep; > a, || <r}# C’)(r‘s). (4)

If np cannot be prolonged as an entire function, the same result holds for Resnp.
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More precisely, we show that for any 0 < ¢ < 1 there exists a5,y < 0 depending on
the dynamical characteristics of D such that if o < ass 4, for any constant 0 < C' < oo
the estimate

#{i; EResng: Rep; > a, || <ry<Or, r>1

does not hold. Similar results have been proved for Pollicott-Ruelle resonances
for Anosov flows [18, Theorem 2] and for Axiom A flows [17, Theorem 4.1]. For
obstacles D satisfying (1) the same result for scattering resonances has been proved
for Neumann problem in [22] and for Dirichlet problem and real analytic boundary
in [4, Theorem 1.3]. According to Theorem 1.1, it follows that for large A > 0 in the
region Dy = {z € C: Re z > —A} there are infinitely many poles u € Resm; N Dy
and infinitely many poles v € Res 13 N D 4. Therefore, if np is analytic in Dy, by
(3) we deduce that we must have an infinite number of cancellations of poles p with
poles v and the corresponding residues of the cancelled poles p and v must coincide.

Remark 1.2. The proof of Theorem 1.1 for np works under the condition that
there exist two sequences (¢;), (m;) with ¢; — 0o, m; — oo as j — oo with the
properties in Proposition 4.1. If np cannot be prolonged as an entire function, the
existence of such sequences has been established by Tkawa (see [14, Prop. 2.3]). In
Theorem 1.1 we prove the inverse result.

It is interesting to find the supremum of numbers 3, < a, such that the strip
{z € C: Rez > fB,} contains an infinite number poles of 1, and to obtain so called
essential spectral gap. This is a difficult open problem. Let b, < a4 be the abscissa
of convergence of the series

Tﬁ (7)6757(7)
Tana —po R 1 5
2. det(id — B,y o8 5)
v-m(7)€gqN
and let o = max{0,a1}. In our second result, we obtain a more precise result for
Resn;.
Theorem 1.3. For any small € > 0, we have

t{u; € Resmr : Rep; > (2d% +2d — 1/2)(by — 2) — €} = oo. (6)

Notice that
2d* +2d —1/2 =2(d*> +d —1) +3/2 =2dim G + 3/2,

where G is the (d —1)-Grassmannian bundle introduced in Section 2. In the appen-
dix, we prove that b; coincides with the abscissa of convergence of the series

TH(7)e
ZY: |det(D

x‘P‘r('y)|Eu(ac))|

—s(m)

, Res > 1, (7)

where E,(z) is the unstable space of € v (see (10) for the notation). By using
symbolic dynamics, we define in (A.3) a function G(£,y) < 0 on the space Ef;
related to the dynamical characteristics of D (see the appendix for definitions) and
prove the following

Proposition 1.4. The abscissas of convergence ay and by are given by
a1 =P(G), by =P(2G), (8)
P(G) being the pressure of G defined by (A.2).
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For a1 < 0, we have @ = 0, and Theorem 1.3 is similar to [18, Theorem 3]
established for weakly mixing Anosov flows v, where instead of b; = P(2G), one
has the pressure P(2¢") < 0 of the Sinai-Ruelle-Bowen potential

d
YP(zr) = T (log |deth¢t|Eu(x)|) le=0-

Notice that for Anosov flow one has P(¢") = 0 (see [3, Theorem 5]), while in our
case a; = P(G) can be different from 0. More precise results for the poles of the
semi-classical zeta function for contact Anosov flows have been obtained in [8], [9,
Theorem 1.2].

Remark 1.5. The constant 2d? +2d — 1/2 in (6) is related to the estimate (22) of
the Fourier transform Fly 1 in the local trace formula for 7 (s) in Theorem 3.2 and

is probably not optimal. A better estimate of FAJ can be obtained if the bound
of the number of poles (22) is improved (see for example, [1], where the Hausdorff
dimension of the trapped set K is involved).

We have by = by since the series

Z (_1)M(7)Tﬂ<7)e—sr(w)

,Res>1 (9)
|det(Id — Py)]

is analytic for Re s > b;. We discuss this question at the end of the appendix.
Theorem 1.3 can be generalized for Res 12 and one obtains (6). The proof works
with some modifications.

The paper is organized as follows. In Section 2 we collect some definitions and
notations from [4] which are necessary for the exposition. In particular, we define
the non-grazing billiard flow ¢y, the (d — 1)-Grassmannian bundle G, the bundles
&k, over G, and the operators Py, 0 <k <d, 0<{< d?. In Section 3 we obtain
local trace formulas combining the results in [17, §6.1] and [4, Lemma 3.1]. In
Section 4 we prove Theorems 1.1 and 1.3. Finally, in the appendix we use symbolic
dynamics and establish Proposition 1.4.

2. Preliminaries. We recall the definition of billiard flow ¢; described in [4, §2.1].
Denote by SR? the unit tangent bundle of R%, and by 7 : SR? — R the natural
projection. For z € 0D;, denote by n;(z) the inward unit normal vector to 0D; at
the point z pointing into D;. Set

D = {(z,v) € SR? : x € dD}.

We say that (z,v) € Top, (R?) is incoming (resp. outgoing) if we have (v,n;(z)) >0
(resp. (v,nj(z)) < 0). Introduce

Din = {(x,v) € D : (x,v) is incoming},

Dout = {(z,v) € D : (z,v) is outgoing}.
Define the grazing set Dy = T'(0D) N D and obtain
D = D, U Diy U Do

The billiard flow (¢¢)¢cr is the complete flow acting on SR® \ 7~1(D), which is
defined as follows. For (z,v) € SR?\ 771(D), set

Ty (z,v) = x£inf{t > 0: x £ tv € OD}.
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For (z,v) € Diyjout, denote by v € Dy in the image of v by the reflexion with
respect to T,,(0D) at « € dD;, given by

!

v = v —2(v,n;(x))n;(x), veS,(RY, x€aD;.
Then, for (z,v) € (SR \ 771(D)) U Dy, define

de(x,v) = (z+tv,v), te[r_(z,v),7+(z,0)],
while for (z,v) € Diy/ous, We set

({E,U) S Douta te [07T+(1’7v)} )
= if
¢u(x,0) = (¢ +tv,0) i {or (z,v) € Dip, t € [T—(z,v),0],
and
(z,v) € Din, t €10, 74 (x,v)],

($7’U) € Dout> te [T,(.”L',U/),O[-

or(z,v) = (z+ ', 0") if {
or
We extend ¢; to a complete flow still denoted by ¢, having the property

(;SH_S(:L‘,’U) = ¢t(¢s(xvv))ﬂ t,S € Ra (xav) € SRd \ ,/Til(b)'

Next, we introduce the non-grazing set M as
M=B/~, B=SR\ (w—l(f)) uDg) :

where (z,v) ~ (y,w) if and only if (z,v) = (y,w) or
r=y€dD and w=1".

The set M is endowed with the quotient topology. We change the notation and

pass from ¢; to the non-grazing flow ¢;, which is defined on M as follows. For

(z,v) € (SRY\ 7~1(D)) U Djy, define

@t([(mav)]): [¢t(xav)]a tE}Tﬁ(x,U),T_%_(JZ,U)[,
where [z] denotes the equivalence class of z € B for the relation ~, and
T8 (z,v) = £inf{t > 0: ¢14(z,v) € Dg}.

Thus, ¢; is continuous, but the flow trajectory of (z,v) for times ¢t ¢ |72 (z,v),
7% (z,v)[ is not defined. Clearly, we may have 7% (z,v) = %00, while 7£(z,v) # 0
for (z,v) € Diy. Note that the above formula indeed defines a flow on M because
each (z,v) € B has a unique representative in (SR%\ 7~1(D)) U Dy,. Following [6,
Theorem 3.2, we may define smooth charts on M = B/ ~ and ¢; becomes C* a
non-complete flow with respect to new charts.

Throughout, we work with the smooth flow ¢; and denote by X its generator.
Let A(z) ={t € R : w(p(2)) € OD}. The trapped set K of ¢, is the set of points
z € M which satisfy —72(z) = 75 (2) = +o00 and

sup A(z) = —inf A(z) = +o0.
By definition, ¢;(z) is defined for all ¢ € R whenever z € K. The flow ¢, is

called uniformly hyperbolic on K if for each z € K there exists a dy; invariant
decomposition

T.M = RX(2) ® E,(2) ® Ey(2), (10)
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with dim F(z) = dim E,(z) = d — 1, such that for some constants C' > 0, v > 0
independent of z € K and some smooth norm || - || on TM, we have

Ce Vo], wveEs(z), t=0,
Ce "M|v||, wveE,(z), t<O0.

The spaces E;(z) and E,(z) depend continuously on z (see [11, Section 2]).

The flow ¢; is uniformly hyperbolic on K (for the proof see [4, Appendix A]).
Take a small neighborhood V of K in M with smooth boundary, and embed V'
into a compact manifold without boundary N. We arbitrarily extend X to obtain
a smooth vector field on NV, still denoted by X. The associated flow is still denoted
by ¢¢. Note that the new flow ¢; is now complete. Introducing the surjective map

v s B3 (2,8) = [(2,8)] € M,

we have ¢, o mpr = was o ¢y There is a bijection between periodic orbits of ¢; and
¢ preserving the periods of the closed trajectories of ¢, while the corresponding
Poincaré maps are conjugated (see [6, Section 3]).

Consider the (d — 1)-Grassmannian bundle

g :G— N

over N. More precisely, for every z € N, the set 75'(z) consists of all (d — 1)-

[depe(2) - vl < { (11)

dimensional planes of T, N. The dimension of 7,"'(z) is d(d — 1) and G is a smooth
compact manifold with dim G = d?> +d—1 . We lift ¢, to a flow @, : G = G defined
by

01(2z, E) = (pi(2),dpi(2)(E)), z € N, E CT.N, dp(2)(E) C Ty, () N.
Introduce the set

K,={(2,BEu.z2)) : z€ K} CG.

Clearly, K, is invariant under the action of &, since dgy(2)(Ey(2)) = Eu(pi(2)).
The set IN(u will be seen as the trapped set of the restriction of @; to a neighborhood
of K, and the flow ¢ is uniformly hyperbolic on IN((see [3, Lemma A.3] and [4, §2.5]).
Let X be the generator of ¢, and let V., be a small neighborhood of K, in G with
smooth boundary 8V, (see [4, §2.7]). Define

Ti(X)={z€eV,: @i(z2) € Vy, Tt > 0}.
Denote by clos V. the closure of V,. Let p € C*(clos VU,RQ be the defining
function for V,, such that dV,, = {z € clos V,, : p(z) = 0} and dp(z) # 0 for any
z € 9V,,. Following [10, Lemma 2.3], for any small neighborhood Wy of 9V, there

exists a vector field Y on clos V,, arbitrary close to X in C'"*°-topology and flow ¢
generated by Y with the properties:

(1) supp (Y — X) C Wp.
(2) (Convexity condition) For any defining function p of V, and any w € dV,, we
have _ _
Yp(w) =0= Y?p(w) < 0.
(3) Ti(X)=Tx(Y), where I'+(Y) is defined as above by ;.
By [7, Lemma 1.1], we may find a smooth extension of Y on G (still denoted by
Y’) so that for every w € G and T > 0, we have

w,dr(w) €clos V, =  ty(w) € clos V,, Vt € [0,T]. (12)
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In the following, we fix 17“, WO,? and the flow th with the properties mentioned
above. Thus, we obtain an open hyperbolic system satisfying conditions (A1) —(A4)
in [7, §0] (see also [17, §2.1]).

Next, repeating the setup in [4, §2.6], we introduce some bundles passing to open
hyperbolic system for bundles. First, define the tautological vector bundle £ — G
by

E={(w,u) enE(TN) : weGqG, ue wl},
where [w] = E denotes the (d — 1) dimensional subspace of T, (.,)N represented
by w = (z, E), and 7n},(TN) is the pullback bundle of TN. Second, introduce the
“vertical bundle” F — G by
F={(w,W)eTG : dng(w) -W =0},

which is a subbundle of the bundle TG — G. The dimensions of the fibres £, and
F of £ and F over w are given by

dimé, =d—1, dimF, = dimkerdrg(w) =d* —d
for any w € G with mg(w) = z. Finally, set

Ei=NEQANF, 0<k<d—1, 0<L<d®—d,
where £* is the dual bundle of £, that is, we replace the fibre &, by its dual space
Ex.

Next, we use the notation w = (z,7) € G and u ® v € & ¢|,,. By using the flow
1/~Jt, introduce a flow @f’e 2 &, — Ery by

o (wu ) = (Vw), bw) - |[@deilma@) )™ (W) @ dW) ™)), (3)
with
bi(w) = [det Ay (m (@) 1 [*/2 - det (b (@) erar ) 77,
where ~T denotes the inverse transpose. Consider the transfer operator
M (G, E) = CF(G, )
defined by
5 u(w) = &) [u( ()], we C¥(G. &) (14)
and let Py o : C®(G, &) = C(G, & o) be the generator of @Ii’f’* given by
Pirou= %(@’i’f”"u)
The operator Py ¢ has the property
P o(fu) = Pref)u+ f(Preu), f € C®(G), ue C®(G,Ee).

Thus, we obtain the same setup as in Definition 6.1 in [17, §6.1]. In the last
paper the authors deal with a general Axiom A flow with several basic sets. In our
case, we have only one basic set and we may apply the results of [7] and [17]. With
some constant C' > 0, we have

, u€ C%(G, &)

t=0

”67th'£HL2(G,€k,g)—>L2(G,5kJ) <Ce“ >0

and

(Pro+s) ' = / et Pret) it L2(G, Ep ) — L2(G,Eky), Res > 1.
0
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Introduce the operator
Rk’z(s) = 1‘7u (Pk’z + S)_llf/u : ijo(f/u,&c,g) — 'D/(f/u,gk’e% Re (S) > 1,

where D’ (‘77“ Ek,¢) denotes the space of & g-valued distributions. Applying [7, The-
orem 1], we obtain a meromorphic extension of Ry ¢(s) to the whole plane C with
simple poles and positive integer residues.

For w € G and t > 0, consider the parallel transport map

Ol = Qs ® Gyt AREL@AF, — ARES @ NFy
given by
W@V (P (0@ V) (B (1)),
where u, v are some sections of ¥ and F,, over w, respectively. The definition does
not depend on the choice of u and v (see [7, Eq. (0.8)]). For a periodic trajectory
F:t —=3(t) = (v(t), Eu(y(t))) with period T, we define
ke

50.1)
(see [7], [4]) and the trace is independent of the choice of the point ¥(t) € 7.

Finally, if ¥ € C(V,) is equal to 1 near the trapping set K,, we have the
Guillemin trace formula (see [7, (4.6)], [25, §3.1], [4, §3.2]) with flat trace

e - 3 r(7)ir(a)3(t — 7(7))

= |det(Id — P,)]

kly _
tr(az”) = tr(a

, t>0. (15)

Here, both sides are distributions on (0, c0), the sum runs over all periodic orbits ¥
of ¢,
Py = A8 () (@) 5, (s )0 5, )

is the linearized Poincaré map of the periodic orbit ¥(t) of the flow ¢, and wsy €
Im(%) is any reference point taken in the image of 4.

To treat the zeta function related only to periodic rays with number of reflections
m(y) € gN, ¢ > 2, we consider the setup introduced in [4, §4.1] and we recall it
below. For ¢ > 2, define the g-reflection bundle Ry — M by

Ry = ([SRd\ (fl(f)) upg)] X Rq)/ ~, (16)
where the equivalence classes of the relation ~ are defined as follows. For (z,v) €
SR?\ (ﬂ_l(lo)) U Dg) and £ € RY, we set

[(z,v,0)] = {(z,v,8), (x,v’7A(q) O}t if (z,v) € Din, (xﬁvl> € Dout,
where A(q) is the ¢ X ¢ matrix with entries in {0,1} given by
0 1

1 0
Clearly, the matrix A(q) yields a shift permutation
A(q) (617 £2a ceey gq) = (51}7 51) seey €q71)

and 4
A(@Q)?=1d, trA(g)’ =0, j=1,...,q—1 (17)
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This indeed defines an equivalence relation since (z,v’) € Doy, whenever (z,v) €
Diyn. Define a smooth structure of R, as in [4, §4.1] and introduce the bundle

q __
Epp=Ere@mGRy,

where 7R, is the pullback of R, by mg so iRy — G is a vector bundle over G.
Consider a small smooth neighborhood V' of K. We embed V into a smooth compact
manifold without boundary N and we fix an extension of R4 to N. Consider any
connection V7 on the extension of R,, which coincides with d? near K, and denote
by

Py (2) : Re(2) = Ry(p1(2))

the parallel transport of V¢ along the curve {¢,(z) : 0 < 7 < t}. We have a
smooth action of ¢ on R,, which is given by the horizontal lift of ¢,

902(255) = (‘pt(z)qu,t(z) : f)’ (Z,f) € RQ'

We may lift the flow ¢, to a flow ®F“? on &L > which is defined locally near K,
by

& (w,u® v E)
= (Be(w), bu(w) - [(derlra@) ™)™ () © (@) M(0) © Pru(z) €] )

for any w = (2, E) € G, u®@v®¢ € & )(w) and t € R. Following [4, §4.1], we deduce
that for any periodic orbit v = (¢ (2))rejo,7(y)], the trace

if m(y)=0 mod g,
<>)={q ") ! (18)

tr(Poy) = trFy e 0 if m(y)#0 modq
is independent of z. Define the transfer operator
PPt 0% (G, EL,) — C(G,EL,)
by
5" u(w) = B u(@i ()], w e CF (G &)
Ph

and denote by Py, ¢, the generator of . As above, we obtain the flat trace

() tr(ak )t - (7))
2

— ,t>0. (19)
|det(Id — P,)]

tr’ (Ye~Freay) = g
¥m(ma(¥))€qN

We close this section with the following lemma.

Lemma 2.1 (Lemma 3.1, [4]). For any periodic orbit & of the flow ¢, related to a
periodic orbit v, we have

d—1d*—d

ZZ D r(ab®) = |det(ld — Py)| 712,

\detId P v Syrt
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3. Local trace formula. In this section, we apply the results of [7] and [17, §6.1]
for vector bundles. For simplicity, we will use the notations &, = 5,1,@7 Pr, =

Py, etc. For x € C°(V,) such that Y = 1 near K,, by [7] and [17, §6.1], we
conclude that for any integer ¢ € N,

X(=iProqg+5)7'X

has a meromorphic continuation to C. Denote by Res (—iPy ¢ 4) the set of poles of
this continuation. Then, for any constant 5 > 0, it was proved in [17, (6.3)] that
we have the upper bound

fRes (—iPrrq) N{AE€C, ReA—E| <1, ImA > -8} = O(ET 1) (20)
In particular, there exists C' > 0 depending on 3 such that
fRes (—iPhrq) N{AEC, || < E, ImA> -} <CET T 4 C.

Notice that the power d> +d — 1 comes from dim G. Next, for Res (—iPy ), we
obtain as in [17] the following local trace formula.

Theorem 3.1 (Theorem 1.5 and (6.5), [17]). For every A > 0 and any q € N, there
exists a distribution Fﬁ’z’q € S'(R) supported in [0,00) such that

—iut k.l,q
E e + F9()
nERes (—iPg 0,q),Jm u>—A

_ T (y)tr(ab ot — 7(7))
APy |det(I1d — P,)|

,t>0. (21k.0.4)
7, m(y)€gN

Moreover, for any € > 0 the Fourier-Laplace transform F’j’z’q()\) of Fj’e’q(t) is
holomorphic for Im A < A — € and we have the estimate

ERSUN) = O cnng(14 AT 214 Im A < A —e. 22
A 16k,4,q
Here, v = (7).

As mentioned in [17, Section 6], the proof in [17, Section 4] with minor modifica-
tions works in the case of vector bundles. Combining the above result with Lemma
2.1, we obtain the following theorem.

Theorem 3.2. For every A > 0 and any € > 0, there exists a distribution Fa 4 €
S'(R) supported in [0,00) with Fourier-Laplace transform Fa 4()\) holomorphic for
Im A < A — € such that

d?—d

d
> > (=)™ 4 Fa (1)
k=0 £=0 p€cRes (—iPp,¢,q),Im p>—A
T (7)d(t — (7))

=9 Z _ 1/2°
s EaN |det(Id — Py)|

t>0, (23,)

where Fa ,(\) = ZZ:O Z‘Zigd(—l)k*eﬁ‘zj’q()\) satisfies estimate (22).

Choosing ¢ = 1, we obtain a local trace formula for Neumann dynamical zeta
function 1y (s), introduced in Section 1. For the Dirichlet dynamical zeta function
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np(s) given in Section 1, we use representation (3) and applying (23,) with ¢ = 1,2,
we obtain the local trace formula
d d*—d
> X e
k=0 £=0 p€Res (—iPy 2),Imp>—A
d d’-d
-3 > (=1)F et 4 Fyo(t) — Fa(t)
k=0 £=0 p€eRes (—iPk,g,l),Im u>—A
-y (=)t (y)é(t = 7(7))
|det(Id — P,)|*/2

, t>0. (24)

Some resonances f € Res (—iPy4), k+ ¢ 0odd, ¢ = 1,2 may cancel with some
resonances v € Res (—iPy4), k + ¢ even,q = 1,2, and a priori it is not clear if
the meromorphic continuation of dynamical zeta functions ny(s) and np(s) have
an infinite number poles. Notice that all poles are simple and for fixed ¢, the
cancellations in (23,) could appear for terms with coefficients + and — related to
k + ¢ even and k + ¢ odd, respectively. On the other hand, in (24) we have more
possibilities for cancellations of poles.

4. Strip with infinite number poles.

Proof of Theorem 1.1. We will prove Theorem 1.1 for np since the argument for 7,
is completely similar and simpler. After cancellation, all poles p on the left-hand
side of (24) satisfy Im p < a = max{0,a1}. To avoid confusion, in the following
we denote by 1z the poles p in (24) which are not cancelled. Assume that for some
0<d<land0<k<gq 0<l¢<q®>—gq, ¢g=1,2, we have estimates
Naktq(r) = {5 € Res (=iPyeq) s [0l <7, —A <Imp < a}

< P(A,k, £, q,06)r°. (25)

We follow the argument in [18, Section 5] and [4, Appendix B] with some mod-

ifications. Let p € C§°(R,R4) be an even function with supp p C [—1,1] such
that

p(t) >1 if |t] <1/2,
and

p(=A) = /e”)‘p(t)dt >0, MAeR.

Let (¢;)jen and (m;j)jen be sequences of positive numbers such that ¢; > dy =
mingy, dist (Dg, Dy,) > 0, mj > max{1, %}, and let £; — 0o, m; — 0o as j — 0.
Set

pi(t) = p(m;(t —4;)), teR,
and introduce the distribution Fp € S'(R™) by

_ 1/2
2 Jdet(T - P

The following proposition was established by Tkawa.
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Proposition 4.1 (Prop. 2.3, [14]). Suppose that the function s — np(s) cannot be
prolonged as an entire function of s. Then, there exists ag > 0 such that for any
B > g, we can find sequences (¢;),(m;) with £; — oo as j — oo such that for all
7 =0, one has

Pl <my < el and  |(Fp,py)| = e b,
We apply the local trace formula (24) to the function p;(¢). For —A <Im( < ¢,
we have
~ —1) A — — il —1 _al;+m; ! max(a,A — —
1) = mj Hp(my Qe < Cymy tetatmy XA (14 ).
Then, for ¢ = 1,2 and —A < Im i < a, one obtains

! > (7 p;(1))]

Im g>—A, i€Res (—iPg ¢,q)

< C’N,Amj*le‘)‘ej / 1+ m;lr)_NdNA,k,é,q(T)
0

e, [Td 1 \—
= _ON,Amj 1o £ / % ((1 + m; 17‘) N)NA7k7l,q(7“)d’r‘
0

< By aP(Ak, £, q,8)m; et / (1+y) "V Tyldy
0

= ANP(A k,£,q,6)m; "0 < Dy g 56l P00,
Next, applying (22), we have
(Fages) = [ Faal-0)p0)¢ = Fa (=075 (€
R R+i(e—A)
and choosing M = 2d? + 2d + 1, we deduce
16(6714)2]- em;l max{A—e,a}

[(Fa,q:05)| < Cr,a,gmy

- /(1 + ¢ 4 ¢ MG

< DMA’qe(e—A)Z]m?d +2d—1+e < DM,A,qe(e Al 2(2d%+2d—146)BL;

If the function np cannot be prolonged as an entire function, we may apply Propo-
sition 4.1. Taking together the above estimates and summing for 0 < k£ < d, 0 <
{<d?>—dand qg=1,2, we get

DAe(*B(1*5)+“)Ef +EAe(efA)Zj62(2d2+2d71+e)ﬁ€j > ool

Here, the constants D4 and E4 depend on A, but they are independent of ¢;.
Choose 8 > alof‘%a and fix § and 0 < € < 1. Next, choose

A>22d* +2d —1+¢€)f + e+ ap.

Fixing A, for {; — oo we obtain a contradiction. This completes the proof of
Theorem 1.1 for np.

To deal with Res 74, ¢ > 2, we choose a periodic ray -y with ¢ reflections,
l; = 374 (7o) and m; = eBl . The existence of a periodic ray with ¢ reflexions
follows from the fact that for every configuration & € X 4, there exists a unique ray
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v(§) with successive reflexion points on ....0D;_1,0D;,0Dj41, ... (see the appendix
for the definition of ¥4 and [12]). We apply the lower bound

> ce 0t Vi >0

> TH)I(t —7(7)) o]
det(Id — P,)|t/2" "
%m(v)eqN| et 2l
with ¢ > 0,co > 0 independent of ¢;. For ¢ = 1, we choose {; = JiTH(y), m; = el
with some periodic ray v and obtain the above estimate. Repeating the argument
for np, we prove (4). O

Proof of Theorem 1.3. We follow the approach of F. Naud in [18, Appendix A]. Let
0 < p € C§°(—1,1) be the function introduced above. For £ € R and ¢t > max{dy, 1},
introduce the function
bie(s) = e p(s —t), £ €R.

In the proof we fix ¢ = 1. We apply the trace formula (23,) to ¢, ¢. As above, denote
by f the poles which are not cancelled on the left-hand side of (23,). Assume that
for 0 <k <dand0</{<d?—d, we have

t{it € Res (=iPy;): —A—e<Imp<a}=PA ke < . (27)
First, we have

[$ee(Q)] < Cne™ HImel(1 4 Re ¢ — &)~

For —A < Impg < a and N = 1, the sum of terms involving poles i in (23,)
can be bounded by Cie™ with constant Cy > 0 depending on P(A,k, ¢ €) and

1+¢]
exp(max{A, a}). Second, by using (22) for F'4 1, one deduces

[(Fa, )] < Coele™ DD (1 [¢])2d 424 14e,

Setting
TNt () p(7(v) — t)
S(t7£) - Z |det(Id P’y)|1/2 )
we get
Cie S
‘S(t7£)‘_ 1+|§‘ +CA€ )t(1+|§|)2d +2d—1+ )

Now consider the Gaussian weight
Gt o) = 01/2/ 1S(t, )27 2dg, 0 < o < 1.
R

The estimate for |S(t,&)| yields

2~ 202 2ot 2 —2(A—e)t 2(2d?4+2d—1+¢)
and
G(t O') < Cl 1/2 2at+Cl —(2d%+2d— 1+e) 2(A 7e)t. (28)

On the other hand, taking into account only the terms with 7(v) = 7(7'), we get

5= 5§~ )T e T 2 () — (e () — )
G(t,0) ZZ [det(Id — P,)[1/2[det(Id — P, )[1/2

>c Z 7 (y)ldet(Id — P,)|

t—1/2<7(7)<t+1/2

(29)

with ¢ > 0 independent of ¢t and o.
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f ] T
Set T("}/) = TA/, T (’7) = T’Y7 Ay = m

convergence of Dirichlet series (5) with ¢ = 1.

. Recall that b; is the abscissa of

We need the following lemma.

Lemma 4.2. Let e > 0 be sufficiently small and by # 0. Then there exists a sequence

t; — oo such that
Z ay > elb1729% (30)
t—1/2<T, <t;+1/2
On the other hand, for by = 0 and small u > 0, there exists a sequence t; — o0
such that we have estimate (30) with by replaced by —u/2
Proof. We consider three cases.

Case 1. b; < 0.
Let the lengths of the periodic rays be arranged as follows:

T <Ty<..<T)<..
It is well known (see for instance [5]) that
log |~ ay|
by = limsup ——— =T 77
n—oo T’I’L

We fix a small € > 0 so that —§ = by —3¢/2 < 0. There exists an increasing sequence
ny <ng < ... <Ny, <..such that limn; = +oo and

log | ZT,LJ. <T, as|

T,

= bl — €. (31)

Choose n; large so that
1>e 0+ 267%T"7', e2Tn; > 92 forj > 1.
Set ¢1 = T,,, and write
o0
Sasy Y
@ <T, k=0 g1 +k<T, <qi+k+1
Assume that we have the estimates
> ay < e @R g >, (32)
q1+k<Ty<q1+k+1
Then,
S L L (—o4e/2)
—dq1 —ké _ —0q1 —(—0+€/2)q1
Zan,ge Ze =e 1_675<2e .
@ <T, k=0

Since —¢ +€/2 = by — €, we obtain a contradiction with (31) for T,,. Consequently,
there exists at least one k1 > 0 such that

—6(q1+k1)
Z ay > e 1Tk (33)
q1+k1<Ty<q1+ki1+1
The series 3 7 50 4 x, 42 aye~ % has the same abscissa of convergence b;. We
~yZ

repeat the procedure, choosing go > q1 + k1 + 2, and obtain the existence of k3 > 0

such that
Z ay > e 0(azth2)

q2+k2<T,<ga+ka+1
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By iteration, we find two sequences {g;}, {k;} such that
Gj+1 2> qj +k; +2,
and a sequence of disjoint intervals

g +kj g +ki+1], j=1,2,...

Z ay > e Oitks) (34)
qj+k; <Ty<qj+k;+1
The periods ¢; may change in the above procedure, but for simplicity we use the
same notation. Choosing t; = ¢; + k; + 1/2, we deduce (30).

Case 2. b > 0.
For b,, we have the representation

so that

log| - as|
by = lim sup ——— =T 77
n—oo T’I’L
We fix a small € > 0 so that d; = by —3¢/2 > 0. There exists an increasing sequence

. d c
ny < ng < ... <Ny, < ... such that limn; = +oo, e‘;lil < eE[Tnl], and

log | ZTWSTWJ. 0y

by —e. 35
T, > by —e (35)
We get
[Tnl]
YDIEAED D D
T, <Tn, k=0 k<Ty<k+1
Assume that for k =0, ..., [T,,] we have
Z 0. < edik
k<T,<k+1
This implies
71 ] €
! ([T ]+ 1)dr _ 1 d1p—5([Th, ]
ik _ €7 ee (b1—€)Th,
Zaw<Zel AT <o e O

T, <Tp,

and we obtain a contradiction with (35) and T;,,. Thus, for some 0 < ky < [T),,] we

have
Z a, > eb1=3¢/Dks,
k1<Ty<ki+1

Following this procedure, we construct a sequence of integers {k;}, k;j11 > Ty, +1

satisfying
Z ay > e(b1=3¢/2)k;
ki <Ty<kj+1
and choosing t; = k; + 1/2, we arrange (30) for large k;.
Case 3. by =0.
For small v > 0, consider the Dirichlet series
Tne (s+u)Ty

Z det(Id — P,) Z“” Pe .
|
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This series has abscissa de convergence —u < 0 and we may apply the results of
Case 1. For a suitable sequence ¢; — co depending on —u, we obtain the estimates

e u(ti—1/2) Z ay > Z a,Y€7UT’y > e(-u=20)t;
tj—1/2<T, <t;+1/2 tj—1/2<Ty<t;+1/2
Consequently,
> ay > e W22 5 o(mu/27290t

tj—1/2<T,<t;+1/2
O

Going back to the proof of Theorem 1.3, assume first that b; # 0. Therefore,
from (28) and (29) with ¢ = t;, we obtain

0101/2€2atj + 020_—(2d2+2d—1+e)e—Q(A—e)tj > e(b1—26)t; (36)
with constants ci,cp > 0 independent of ¢;. Now choose

o= 017262(1)1—36—204)15]- <1.

Since
b1 — 3¢ — 2a0 — (b1 — 2¢) + 2e < ¢,
we have
et 4 636—2(2d2+2d—1/2+5)(b1—36—2a)tj6—2(A—(1/2)e)tj > 1.
Taking

by —2
A=—(2d +2d — 1/2)(b, — 20) +3e(2d2 +2d— 2o “ -I-e)
and letting ¢; — 400, we obtain a contradiction. Consequently, for some 0 < ko <
0,0 < 4y < d? —d, setting & = 3¢(2d? + 2d — 252 + €) + ¢, we have
#{fi € Res (—iPpy1,) : Im i > (2d* +2d — 1/2)(b; — 2a) — &} = .
This implies (6) with e replaced by €, observing that the poles @ € Res (—iPg, ¢,)
coincide with the poles A of the meromorphic continuation of 77 (—i\).

For b; = 0, the estimates (30) hold with b; replaced by —u/2. The argument in
the Case 1 implies

#{u; € Res m1 : Rep; > (2d* +2d — 1/2)(—2a) — (e + (2d* + 2d — 1/2)u/2)} = oo.
For small u, we arrange (2d% +2d —1/2)u/2 < €, and since e is arbitrary, we obtain
(6) with by = 0. This completes the proof of Theorem 1.3. O

Appendix. Here, we prove Proposition 1.4.

Proof of Proposition 1.4. First,
det(Id — P’Y) = det(Id — DISDT,Y |Es($))det(1d — .DzQDT,y |Eu(w))
= det(Dm(PT,, E‘u(z))det(ld - Dz‘pTv

Consequently,
|det(Id — P,)| ™! = |det Dyt |, ()] *

x|det(Id — Dyt | g, (2))| " |det(Id = Do [, )] "
For large T, we have

HDZSDT—JES(I)H < Ce_éT’“ ||Dw907Tﬂ,|Eu(1:)|| < 06_6T77 6> O7VT’Y

E.(2))det(Dap-1 |B, () —1d), € 7.
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with constants C' > 0, § > 0 independent of T, since the flow ¢, is uniformly
hyperbolic (see [4, Appendix A]). Thus, for large T, we obtain
crldetDyor | g, (| ~" < |det(Id — Py)| 7" < Cy|detDyor, | gy 2 (A1)
with 0 < ¢; < C; independent of T,. We have
detDy ot | By (2) = e,z ey
with
dy =108 (M5 Aa-14) > 0,

where A; ., are the eigenvalues of D,¢r. |, (z) With modulus greater than 1. The
above estimate shows that the abscissa of convergence of the series

> Tiem Tt 5 = —dy, Res> 1
Y

coincides with by.

Our purpose is to express by by some dynamical characteristics related to sym-
bolic dynamics for several disjoint strictly convex obstacles. To do this, we recall
some well known results and we refer to [13], [12], [15] and [20] for more details.
Let A(%,j)i j=1,..r be an r X r matrix such that

L 1ifs B
Al ) =1 . f]
0if¢=j.
Introduce the spaces
Sa={{={G}2 o &G E{l,nr}, A&, &iv1) =1, Vie Z},

Sh={={6}20, G e{l,, .}, A&, &) =1, Vi > 0},
Given 0 < 6 < 1, define a metric dg on X4 by dg(&,n) = 0if € =7 and dg(&,7) = 6%
if £ # n, and let k be the maximal integer such that & = n; for |i| < k. Similarly,
we define a metric d; on Ej. Following [20, Chapter 1], for a function F : ¥4 — C,
define

vargF' = sup{|F'(§) — F(n)| : & = ns, [i| <k}
and for G : EX — C, define
vary,G = sup{|G(§) — G(n)| : & =mn;, 0 <@ < k}.

Let Fy(X4), Fp(X7) be the set of Lipschitz functions with respect to metrics dp, dg',
respectively, with norm

[1£1lle = [ flloc + lfllo, [ fllo = sup
k>0

vary f
ok

Let 04 be a shift on ¥4 and Zj given by
(O—Ag)i = §i+13 Vi e Z7 (O—Ag)i = €i+17 Vi Z 07

respectively. For every £ € 34, there exists a unique reflecting ray v(§) with suc-
cessive reflection points on ....0D;_1,0D;,0D;11, ..., where the order of reflections
is determined by the sequence ¢ (see [12]). If (P;(¢)) are the reflexion points
of v(§), we define the function

f(&) = [IPo(§) = P& -

It was proved in [12, Section 3] and [23, Section 3] that one can construct a sequence
of phase functions {¢¢ ;(x)}52 such that for each j, the phase ¢¢ ; is smooth in

j=—c0

oo
j=—o00
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a neighborhood U ; of the segment [P;(£), Pj4+1(€)] in RY\ D and

(1) [Vepe 5 (@)[| = 1 on Ue 5,

s (£)—P;(&)

(i) Vepe,;(P5(€)) = HPT:(E)W’

(ii) e j = e j+1 on IDj1 MU, VU j41,

(iv) for each x € U j, the surface C¢ j(z) = {y € Ue; : @ej(x) = e ;(y)} is
strictly convex with respect to its normal fields Vg ;.

Denote by x;(€), j = 1,...,d — 1, the principal curvatures at Py(§) of Ce o(x),
and introduce

d—1
9(&) = —log [J (1 + f£(&)r;(£)).
j=1
Then,
d—1 &) d—1
I Moo H [T+ f(eho)m;(0he).
j=1 k=1 j=1

It follows form the exponential instability of the billiard ball map (see [12], [26])
that f(€),g(&) become functions in Fy(¥X4) with 0 < 8 < 1 depending on the
geometry of D. We define

Snh(€) = h(&) + h(oa) + ... + h(c’}'€)

and for a periodic ray y(£), one obtains

Tye) = Sm((e)) F(€): Oy(e) = Sm(y(6))9(8)-

Consider the zeta function

1
5) = (Z = 3 eSn(—Sf(E)-i-g(é)))’ Res > 1

n=1  o%&(=¢

and observe that
—*Z Z T]j —sTy 40

Next, it is well known (see for instance [20, Chapter 1]) that given h € Fy(Xa4),
there exist functions h, x € Fyi/2(X4) such that
h(&) = h(€) + x(048) = X(€)

and h(¢) € F91/2(2+) depends only on the coordinates (&g, &1, ...). We denote this
property by h ~ h. Choose f ~ f, j ~ g with f,§ € Fgi/2 (Z ) and write

(Z Z —sf( 5)+g(£)))

n=l(efme=e
The pressure P(F) of a function F' € C(X4) is defined by
P(F) = sup(h(v. o) + [

XA

Fdl/),

where h(v,04) is the measure entropy of o4 with respect to v, and the supremum
is taken over all probability measures v on ¥ 4 invariant with respect to o 4.
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Following [20, Chapter 6], consider the suspended flow th (&s) = (£,5+ 1) on
the space

Bh={(¢s): €54, 0<s < f(O)})
with identification (&, f(§)) ~ (04(€),0). For a function G € C(ZQ), define the

pressure

P(G) = sup{h I/f,O’t / Gdvy}, (A.2)

where h(vy, crtf ) is the measure entropy, and the supremum is taken over all prob-

ability measures v¢ on ) ‘4 invariant with respect to at The suspended flow a,f is

weakly mixing if there are no ¢ € R\ {0} with the property

where M(£) € C(X4 : Z) has only integer values. According to [26, Lemma 5.2
and [21, Lemma 1], the flow th is weakly mizing.

Applying the results of [20, Chapter 6], we deduce that the abscissa of conver-
gence by of Z(s) is determined as the root of the equation

P(—sf+§)=P(-sf+9)=0

with respect to s. This root is unique since s — P(—sf +g) is decreasing. Introduce
the function

d—1
G(&y) = —% Yo € (A.3)
Clearly,

1G)
g(§) 22/0 G(& y)dy

Then, [20, Proposition 6.1] says that P(—by f + ¢g) = 0 is equivalent to b; = P(2G).
With the same argument, we show that a; = P(G). This completes the proof of
Proposition 1.4. O

It is easy to find a relation between by and P(g). Repeating the argument of [23,
Section 3], one obtains that there exist probability measures v, 1y on ¥4 invariant
with respect to o4 such that

P(g) <b <P

(9)
Jf(&dv, = Jf(©dwe

Consequently, b; has the same sign as P(g).
We close this appendix by proving that b; = bs. Consider the zeta function

:(il 3 esn<—sf<5>+.a<e>+m>)
n

n=l (o h)me=¢
related to (9). Introduce the complex Ruelle operator

(Lau)() = Y e THTHDMy(y) v € Fyua(SH).

ohn=¢
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Then, for s = by, this operator has no eigenvalues 1 since this implies that the
operator

(Low)(€) = Y ol +Dmy(py)
ohin=¢

will have eigenvalue (-1). This is impossible because from P(fblf +3g) =0, one
deduces that Lj, has eigenvalue 1, and all other eigenvalues of L;, have modulus
strictly less than 1 (see [20, Theorem 2.2]). This shows that the function Z;(s)
is analytic for s = by, hence (9) has the same property. Finally, similarly to (3),
we write the function (9) as a difference of two Dirichlet series with abscissas of
convergence by and by. Therefore, the inequality by < by leads to a contradiction.
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