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Abstract. We study the number of the poles of the meromorphic continu-

ation of the dynamical zeta functions ηN and ηD for several strictly convex
disjoint obstacles satisfying the non-eclipse condition. For ηN , we obtain a

strip {z ∈ C : Res > β} with infinitely many poles. For ηD, we prove the same

result assuming the boundary is real analytic. Moreover, for ηN we obtain a
characterization of β by the pressure P(2G) of some function G on the space

Σf
A related to the dynamical characteristics of the obstacle.

1. Introduction. Let D1, . . . , Dr ⊂ Rd, r ⩾ 3, d ⩾ 2, be compact strictly convex
disjoint obstacles with C∞ smooth boundary, and let D =

⋃r
j=1Dj . We assume

that every Dj has non-empty interior and throughout this paper we suppose the
following non-eclipse condition:

Dk ∩ convex hull (Di ∪Dj) = ∅, (1)

for any 1 ⩽ i, j, k ⩽ r such that i ̸= k and j ̸= k. Under this condition, all periodic
trajectories for the billiard flow in Ω = Rd \ D̊ are ordinary reflecting ones without
tangent segments to the boundary of D. We consider the (non-grazing) billiard flow
φt (see Section 2 for the definition). Next, the periodic trajectories will be called
periodic rays. For any periodic ray γ, denote by τ(γ) > 0 its period, by τ ♯(γ) > 0
its primitive period, and by m(γ) the number of reflections of γ at the obstacles.
Denote by Pγ the associated linearized Poincaré map (see section 2.3 in [24] and
Section 2 for the definition). Let P be the set of all oriented periodic rays. Notice
that some periodic rays have only one orientation, while others admits two (see [4,
§2.3] for more details). Let Π be the set of all primitive periodic rays. Then, the
counting function of the lengths of periodic rays satisfies

♯{γ ∈ Π : τ ♯(γ) ≤ x} ∼ ehx

hx
, x→ +∞, (2)

for some h > 0 (see for instance [20, Theorem 6.5] for weakly mixing suspension
symbolic flow, and [15] and [19]). Hence, there exists an infinite number of primitive
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periodic trajectories and applying (2), for every sufficiently small ϵ > 0, one obtains
the estimate

e(h−ϵ)x ≤ ♯{γ ∈ P : τ(γ) ≤ x} ≤ e(h+ϵ)x, x ≥ Cϵ ≫ 1.

Moreover, for some positive constants c1, C1, f1 and f2, we have (see for instance
[21, Appendix] and (A.1))

c1e
f1τ(γ) ≤ |det(Id− Pγ)| ≤ C1e

f2τ(γ), γ ∈ P.

By using these estimates, define for Re (s) ≫ 1 two Dirichlet series

ηN(s) =
∑
γ∈P

τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|1/2
, ηD(s) =

∑
γ∈P

(−1)m(γ) τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|1/2
,

where the sums run over all oriented periodic rays. The length τ ♯(γ), the period
τ(γ) and |det(Id−Pγ)|1/2 are independent of the orientation of γ. We also consider
for q ≥ 1, q ∈ N, the zeta function

ηq(s) = q
∑

γ∈P,m(γ)∈qN

τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|1/2
,Re s≫ 1.

Clearly, ηN (s) = η1(s). These zeta functions are important for the analysis of the
distribution of the scattering resonances related to the Laplacian in Rd \ D̄ with
Dirichlet and Neumann boundary conditions on ∂D (see [4, §1] for more details).

It was proved in [4, Theorem 1.1 and Theorem 4.1] that ηq has a meromorphic
continuation to C with simple poles and integer residues. We have the equality

ηD(s) = η2(s)− η1(s), Re s≫ 1, (3)

hence ηD admits also a meromorphic continuation to C with simple poles and integer
residues. The functions ηq(s) are Dirichlet series with positive coefficients and by
a classical theorem of Landau (see for instance, [2, Théorème 1, Chapitre IV]),
they have a pole s = aq, where aq is the abscissa of convergence of ηq(s). On the
other hand, from (3) it follows that some cancellations of poles are possible. In this
direction, for d = 2 [27] and for d ⩾ 3 under some conditions [29], Stoyanov proved
that there exists ε > 0 such that ηD(s) is analytic for Res ⩾ a1−ε. The same result
has been proved for d = 3 and a1 > 0 by Ikawa [16].

The purpose of this paper is to prove that ηq(s) has an infinite number of poles
and to estimate β ∈ R such that the number of poles with Re s > β is infinite. The
same questions are more difficult for ηD(s) since the existence of at least one pole
has been established only for obstacles with real analytic boundary [4, Theorem
1.3], and for obstacles with sufficiently small diameters [15], [28]. Clearly, aq ≤ a1.
We have a2 = a1, since if a2 < a1, the function ηD will have a singularity at a1
which is impossible because ηD is analytic for Re s ≥ a1 (see [21, Theorem 1]).

Denote by Res ηq and Res ηD the set of poles of ηq and ηD, respectively. We
prove the following theorem.

Theorem 1.1. For every 0 < δ < 1, there exists αδ,q < aq such that for α < αδ,q,
we have

♯{µj ∈ Res ηq : Re µj ≥ α, |µj | ⩽ r} ≠ O(rδ). (4)

If ηD cannot be prolonged as an entire function, the same result holds for Res ηD.
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More precisely, we show that for any 0 < δ < 1 there exists αδ,q < 0 depending on
the dynamical characteristics ofD such that if α < αδ,q, for any constant 0 < C <∞
the estimate

♯{µj ∈ Res ηq : Re µj ≥ α, |µj | ⩽ r} ⩽ Crδ, r ⩾ 1

does not hold. Similar results have been proved for Pollicott-Ruelle resonances
for Anosov flows [18, Theorem 2] and for Axiom A flows [17, Theorem 4.1]. For
obstacles D satisfying (1) the same result for scattering resonances has been proved
for Neumann problem in [22] and for Dirichlet problem and real analytic boundary
in [4, Theorem 1.3]. According to Theorem 1.1, it follows that for large A > 0 in the
region DA = {z ∈ C : Re z > −A} there are infinitely many poles µ ∈ Res η1 ∩ DA
and infinitely many poles ν ∈ Res η2 ∩ DA. Therefore, if ηD is analytic in DA, by
(3) we deduce that we must have an infinite number of cancellations of poles µ with
poles ν and the corresponding residues of the cancelled poles µ and ν must coincide.

Remark 1.2. The proof of Theorem 1.1 for ηD works under the condition that
there exist two sequences (ℓj), (mj) with ℓj → ∞, mj → ∞ as j → ∞ with the
properties in Proposition 4.1. If ηD cannot be prolonged as an entire function, the
existence of such sequences has been established by Ikawa (see [14, Prop. 2.3]). In
Theorem 1.1 we prove the inverse result.

It is interesting to find the supremum of numbers βq < aq such that the strip
{z ∈ C : Re z > βq} contains an infinite number poles of ηq and to obtain so called
essential spectral gap. This is a difficult open problem. Let bq < aq be the abscissa
of convergence of the series∑

γ,m(γ)∈qN

τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|
, Re s≫ 1 (5)

and let α = max{0, a1}. In our second result, we obtain a more precise result for
Res η1.

Theorem 1.3. For any small ϵ > 0, we have

♯{µj ∈ Res η1 : Re µj > (2d2 + 2d− 1/2)(b1 − 2α)− ϵ} = ∞. (6)

Notice that

2d2 + 2d− 1/2 = 2(d2 + d− 1) + 3/2 = 2dimG+ 3/2,

where G is the (d−1)-Grassmannian bundle introduced in Section 2. In the appen-
dix, we prove that b1 coincides with the abscissa of convergence of the series∑

γ

τ ♯(γ)e−sτ(γ)

|det(Dxφτ(γ)|Eu(x))|
, Re s≫ 1, (7)

where Eu(x) is the unstable space of x ∈ γ (see (10) for the notation). By using

symbolic dynamics, we define in (A.3) a function G(ξ, y) < 0 on the space ΣfA
related to the dynamical characteristics of D (see the appendix for definitions) and
prove the following

Proposition 1.4. The abscissas of convergence a1 and b1 are given by

a1 = P(G), b1 = P(2G), (8)

P(G) being the pressure of G defined by (A.2).
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For a1 ≤ 0, we have α = 0, and Theorem 1.3 is similar to [18, Theorem 3]
established for weakly mixing Anosov flows ψt, where instead of b1 = P(2G), one
has the pressure P(2ψu) < 0 of the Sinai-Ruelle-Bowen potential

ψu(x) = − d

dt

(
log |detDxψt|Eu(x)|

)
|t=0.

Notice that for Anosov flow one has P(ψu) = 0 (see [3, Theorem 5]), while in our
case a1 = P(G) can be different from 0. More precise results for the poles of the
semi-classical zeta function for contact Anosov flows have been obtained in [8], [9,
Theorem 1.2].

Remark 1.5. The constant 2d2 +2d− 1/2 in (6) is related to the estimate (22) of

the Fourier transform F̂A,1 in the local trace formula for η1(s) in Theorem 3.2 and

is probably not optimal. A better estimate of F̂A,1 can be obtained if the bound
of the number of poles (22) is improved (see for example, [1], where the Hausdorff
dimension of the trapped set K is involved).

We have b1 = b2 since the series∑
γ

(−1)m(γ)τ ♯(γ)e−sτ(γ)

|det(Id− Pγ)|
, Re s≫ 1 (9)

is analytic for Re s ≥ b1. We discuss this question at the end of the appendix.
Theorem 1.3 can be generalized for Res η2 and one obtains (6). The proof works
with some modifications.

The paper is organized as follows. In Section 2 we collect some definitions and
notations from [4] which are necessary for the exposition. In particular, we define
the non-grazing billiard flow φt, the (d − 1)-Grassmannian bundle G, the bundles
Ek,ℓ over G, and the operators Pk,ℓ, 0 ≤ k ≤ d, 0 ≤ ℓ ≤ d2. In Section 3 we obtain
local trace formulas combining the results in [17, §6.1] and [4, Lemma 3.1]. In
Section 4 we prove Theorems 1.1 and 1.3. Finally, in the appendix we use symbolic
dynamics and establish Proposition 1.4.

2. Preliminaries. We recall the definition of billiard flow ϕt described in [4, §2.1].
Denote by SRd the unit tangent bundle of Rd, and by π : SRd → Rd the natural
projection. For x ∈ ∂Dj , denote by nj(x) the inward unit normal vector to ∂Dj at
the point x pointing into Dj . Set

D = {(x, v) ∈ SRd : x ∈ ∂D}.

We say that (x, v) ∈ T∂Dj
(Rd) is incoming (resp. outgoing) if we have ⟨v, nj(x)⟩ > 0

(resp. ⟨v, nj(x)⟩ < 0). Introduce

Din = {(x, v) ∈ D : (x, v) is incoming},
Dout = {(x, v) ∈ D : (x, v) is outgoing}.

Define the grazing set Dg = T (∂D) ∩ D and obtain

D = Dg ⊔ Din ⊔ Dout.

The billiard flow (ϕt)t∈R is the complete flow acting on SRd \ π−1(D̊), which is

defined as follows. For (x, v) ∈ SRd \ π−1(D̊), set

τ±(x, v) = ± inf{t ⩾ 0 : x± tv ∈ ∂D}.
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For (x, v) ∈ Din/out, denote by v′ ∈ Dout/in the image of v by the reflexion with
respect to Tx(∂D) at x ∈ ∂Dj , given by

v′ = v − 2⟨v, nj(x)⟩nj(x), v ∈ Sx(Rd), x ∈ ∂Dj .

Then, for (x, v) ∈ (SRd \ π−1(D)) ∪ Dg, define

ϕt(x, v) = (x+ tv, v), t ∈ [τ−(x, v), τ+(x, v)],

while for (x, v) ∈ Din/out, we set

ϕt(x, v) = (x+ tv, v) if

{
(x, v) ∈ Dout, t ∈ [0, τ+(x, v)] ,

or (x, v) ∈ Din, t ∈ [τ−(x, v), 0] ,

and

ϕt(x, v) = (x+ tv′, v′) if

{
(x, v) ∈ Din, t ∈ ]0, τ+(x, v)] ,

or (x, v) ∈ Dout, t ∈ [τ−(x, v
′), 0[ .

We extend ϕt to a complete flow still denoted by ϕt, having the property

ϕt+s(x, v) = ϕt(ϕs(x, v)), t, s ∈ R, (x, v) ∈ SRd \ π−1(D̊).

Next, we introduce the non-grazing set M as

M = B/ ∼, B = SRd \
(
π−1(D̊) ∪ Dg

)
,

where (x, v) ∼ (y, w) if and only if (x, v) = (y, w) or

x = y ∈ ∂D and w = v′.

The set M is endowed with the quotient topology. We change the notation and
pass from ϕt to the non-grazing flow φt, which is defined on M as follows. For
(x, v) ∈ (SRd \ π−1(D)) ∪ Din, define

φt([(x, v)]) = [ϕt(x, v)], t ∈
]
τg−(x, v), τ

g
+(x, v)

[
,

where [z] denotes the equivalence class of z ∈ B for the relation ∼, and

τg±(x, v) = ± inf{t > 0 : ϕ±t(x, v) ∈ Dg}.

Thus, φt is continuous, but the flow trajectory of (x, v) for times t /∈
]
τg−(x, v),

τg+(x, v)
[
is not defined. Clearly, we may have τg±(x, v) = ±∞, while τg±(x, v) ̸= 0

for (x, v) ∈ Din. Note that the above formula indeed defines a flow on M because

each (x, v) ∈ B has a unique representative in (SRd \ π−1(D̊)) ∪ Din. Following [6,
Theorem 3.2], we may define smooth charts on M = B/ ∼ and φt becomes C∞ a
non-complete flow with respect to new charts.

Throughout, we work with the smooth flow φt and denote by X its generator.
Let A(z) = {t ∈ R : π(φt(z)) ∈ ∂D}. The trapped set K of φt is the set of points
z ∈M which satisfy −τg−(z) = τg+(z) = +∞ and

supA(z) = − inf A(z) = +∞.

By definition, φt(z) is defined for all t ∈ R whenever z ∈ K. The flow φt is
called uniformly hyperbolic on K if for each z ∈ K there exists a dφt invariant
decomposition

TzM = RX(z)⊕ Eu(z)⊕ Es(z), (10)
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with dimEs(z) = dimEu(z) = d − 1, such that for some constants C > 0, ν > 0
independent of z ∈ K and some smooth norm ∥ · ∥ on TM , we have

∥dφt(z) · v∥ ⩽

{
Ce−νt∥v∥, v ∈ Es(z), t ⩾ 0,

Ce−ν|t|∥v∥, v ∈ Eu(z), t ⩽ 0.
(11)

The spaces Es(z) and Eu(z) depend continuously on z (see [11, Section 2]).
The flow φt is uniformly hyperbolic on K (for the proof see [4, Appendix A]).

Take a small neighborhood V of K in M with smooth boundary, and embed V
into a compact manifold without boundary N . We arbitrarily extend X to obtain
a smooth vector field on N , still denoted by X. The associated flow is still denoted
by φt. Note that the new flow φt is now complete. Introducing the surjective map

πM : B ∋ (x, ξ) → [(x, ξ)] ∈M,

we have φt ◦ πM = πM ◦ ϕt. There is a bijection between periodic orbits of ϕt and
φt preserving the periods of the closed trajectories of ϕt, while the corresponding
Poincaré maps are conjugated (see [6, Section 3]).

Consider the (d− 1)-Grassmannian bundle

πG : G→ N

over N . More precisely, for every z ∈ N , the set π−1
G (z) consists of all (d − 1)-

dimensional planes of TzN . The dimension of π−1
G (z) is d(d− 1) and G is a smooth

compact manifold with dimG = d2+d−1 . We lift φt to a flow φ̃t : G→ G defined
by

φ̃t(z, E) = (φt(z),dφt(z)(E)), z ∈ N, E ⊂ TzN, dφt(z)(E) ⊂ Tφt(z)N.

Introduce the set
K̃u = {(z, Eu(z)) : z ∈ K} ⊂ G.

Clearly, K̃u is invariant under the action of φ̃t, since dφt(z)(Eu(z)) = Eu(φt(z)).

The set K̃u will be seen as the trapped set of the restriction of φ̃t to a neighborhood

of K̃u and the flow φ̃t is uniformly hyperbolic on K̃(see [3, Lemma A.3] and [4, §2.5]).
Let X̃ be the generator of φ̃t and let Ṽu be a small neighborhood of K̃u in G with

smooth boundary ∂Ṽu (see [4, §2.7]). Define

Γ±(X̃) = {z ∈ Ṽu : φ̃t(z) ∈ Ṽu, ∓t > 0}.

Denote by clos Ṽu the closure of Ṽu. Let ρ̃ ∈ C∞(clos Ṽu, R̄+) be the defining

function for Ṽu such that ∂Ṽu = {z ∈ clos Ṽu : ρ̃(z) = 0} and dρ̃(z) ̸= 0 for any

z ∈ ∂Ṽu. Following [10, Lemma 2.3], for any small neighborhood W̃0 of ∂Ṽu, there

exists a vector field Ỹ on clos Ṽu arbitrary close to X̃ in C∞-topology and flow ψ̃t
generated by Ỹ with the properties:

(1) supp (Ỹ − X̃) ⊂ W̃0.

(2) (Convexity condition) For any defining function ρ of Ṽu and any ω ∈ ∂Ṽu, we
have

Ỹ ρ(ω) = 0 =⇒ Ỹ 2ρ(ω) < 0.

(3) Γ±(X̃) = Γ±(Ỹ ), where Γ±(Ỹ ) is defined as above by ψ̃t.

By [7, Lemma 1.1], we may find a smooth extension of Ỹ on G (still denoted by

Ỹ ) so that for every ω ∈ G and T ⩾ 0, we have

ω, ψ̃T (ω) ∈ clos Ṽu =⇒ ψ̃t(ω) ∈ clos Ṽu, ∀t ∈ [0, T ]. (12)
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In the following, we fix Ṽu, W̃0, Ỹ and the flow ψ̃t with the properties mentioned
above. Thus, we obtain an open hyperbolic system satisfying conditions (A1)−(A4)
in [7, §0] (see also [17, §2.1]).

Next, repeating the setup in [4, §2.6], we introduce some bundles passing to open
hyperbolic system for bundles. First, define the tautological vector bundle E → G
by

E = {(ω, u) ∈ π∗
G(TN) : ω ∈ G, u ∈ [ω]},

where [ω] = E denotes the (d − 1) dimensional subspace of TπG(ω)N represented
by ω = (z, E), and π∗

G(TN) is the pullback bundle of TN. Second, introduce the
“vertical bundle” F → G by

F = {(ω,W ) ∈ TG : dπG(ω) ·W = 0},

which is a subbundle of the bundle TG → G. The dimensions of the fibres Eω and
Fω of E and F over ω are given by

dim Eω = d− 1, dimFω = dimker dπG(ω) = d2 − d

for any ω ∈ G with πG(ω) = z. Finally, set

Ek,ℓ = ∧kE∗ ⊗ ∧ℓF , 0 ⩽ k ⩽ d− 1, 0 ⩽ ℓ ⩽ d2 − d,

where E∗ is the dual bundle of E , that is, we replace the fibre Eω by its dual space
E∗
ω.
Next, we use the notation ω = (z, η) ∈ G and u⊗ v ∈ Ek,ℓ|ω. By using the flow

ψ̃t, introduce a flow Φk,ℓt : Ek,ℓ → Ek,ℓ by

Φk,ℓt (ω, u⊗ v) =
(
ψ̃t(ω), bt(ω) ·

[(
dφt(πG(ω))

−⊤)∧k (u)⊗ dψ̃t(ω)
∧ℓ(v)

])
, (13)

with

bt(ω) = |det dφt(πG(ω))|[ω]|1/2 · |det
(
dψ̃t(ω)|ker dπG

)
|−1,

where −⊤ denotes the inverse transpose. Consider the transfer operator

Φk,ℓ,∗−t : C∞(G, Ek,ℓ) → C∞(G, Ek,ℓ)

defined by

Φk,ℓ,∗−t u(ω) = Φk,ℓt
[
u(ψ̃−t(ω))

]
, u ∈ C∞(G, Ek,ℓ) (14)

and let Pk,ℓ : C
∞(G, Ek,ℓ) → C∞(G, Ek,ℓ) be the generator of Φk,ℓ,∗−t given by

Pk,ℓu =
d

dt

(
Φk,ℓ,∗−t u

)∣∣∣∣
t=0

, u ∈ C∞(G, Ek,ℓ).

The operator Pk,ℓ has the property

Pk,ℓ(fu) = (Pk,ℓf)u+ f(Pk,ℓu), f ∈ C∞(G), u ∈ C∞(G, Ek,ℓ).

Thus, we obtain the same setup as in Definition 6.1 in [17, §6.1]. In the last
paper the authors deal with a general Axiom A flow with several basic sets. In our
case, we have only one basic set and we may apply the results of [7] and [17]. With
some constant C > 0, we have

∥e−tPk,ℓ∥L2(G,Ek,ℓ)→L2(G,Ek,ℓ) ≤ CeCt, t ≥ 0

and

(Pk,ℓ + s)−1 =

∫ ∞

0

e−t(Pk,ℓ+s)dt : L2(G, Ek,ℓ) → L2(G, Ek,ℓ), Re s≫ 1.
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Introduce the operator

Rk,ℓ(s) = 1Ṽu
(Pk,ℓ + s)−11Ṽu

: C∞
c (Ṽu, Ek,ℓ) → D′(Ṽu, Ek,ℓ), Re (s) ≫ 1,

where D′(Ṽu, Ek,ℓ) denotes the space of Ek,ℓ-valued distributions. Applying [7, The-
orem 1], we obtain a meromorphic extension of Rk,ℓ(s) to the whole plane C with
simple poles and positive integer residues.

For ω ∈ G and t > 0, consider the parallel transport map

αk,ℓω,t = α1,ω,t ⊗ α2,ω,t : ΛkE∗
ω ⊗ ΛℓFω −→ ΛkE∗

ψ̃t(ω)
⊗ ΛℓFψ̃t(ω)

given by

u⊗ v 7−→ (e−tPk,ℓ(u⊗ v))(ψ̃(t)),

where u,v are some sections of E∗
ω and Fω over ω, respectively. The definition does

not depend on the choice of u and v (see [7, Eq. (0.8)]). For a periodic trajectory
γ̃ : t→ γ̃(t) = (γ(t), Eu(γ(t))) with period T , we define

tr(αk,ℓγ̃ ) = tr(αk,ℓγ̃(t),T )

(see [7], [4]) and the trace is independent of the choice of the point γ̃(t) ∈ γ̃.

Finally, if χ̃ ∈ C∞
c (Ṽu) is equal to 1 near the trapping set K̃u, we have the

Guillemin trace formula (see [7, (4.6)], [25, §3.1], [4, §3.2]) with flat trace

tr♭(χ̃e−tPk,ℓ χ̃) =
∑
γ̃

τ ♯(γ)tr(αk,ℓγ̃ )δ(t− τ(γ))

|det(Id− P̃γ)|
, t > 0. (15)

Here, both sides are distributions on (0,∞), the sum runs over all periodic orbits γ̃
of φ̃t,

P̃γ = dφ̃−τ(γ)(ωγ̃)
∣∣
Ẽu(ωγ̃)⊕Ẽs(ωγ̃)

is the linearized Poincaré map of the periodic orbit γ̃(t) of the flow φ̃t and ωγ̃ ∈
Im(γ̃) is any reference point taken in the image of γ̃.

To treat the zeta function related only to periodic rays with number of reflections
m(γ) ∈ qN, q ≥ 2, we consider the setup introduced in [4, §4.1] and we recall it
below. For q ⩾ 2, define the q-reflection bundle Rq →M by

Rq =
([
SRd \

(
π−1(D̊) ∪ Dg

)]
× Rq

)/
≈, (16)

where the equivalence classes of the relation ≈ are defined as follows. For (x, v) ∈
SRd \

(
π−1(D̊) ∪ Dg

)
and ξ ∈ Rq, we set

[(x, v, ξ)] = {(x, v, ξ), (x, v′, A(q) · ξ)} if (x, v) ∈ Din, (x, v
′) ∈ Dout,

where A(q) is the q × q matrix with entries in {0, 1} given by

A(q) =


0 1
1 0

. . .
. . .

1 0

 .

Clearly, the matrix A(q) yields a shift permutation

A(q)(ξ1, ξ2, ..., ξq) = (ξq, ξ1, ..., ξq−1)

and

A(q)q = Id, trA(q)j = 0, j = 1, . . . , q − 1. (17)
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This indeed defines an equivalence relation since (x, v′) ∈ Dout whenever (x, v) ∈
Din. Define a smooth structure of Rq as in [4, §4.1] and introduce the bundle

Eqk,ℓ = Ek,ℓ ⊗ π∗
GRq,

where π∗
GRq is the pullback of Rq by πG so π∗

GRq → G is a vector bundle over G.
Consider a small smooth neighborhood V ofK. We embed V into a smooth compact
manifold without boundary N and we fix an extension of Rq to N . Consider any
connection ∇q on the extension of Rq, which coincides with dq near K, and denote
by

Pq,t(z) : Rq(z) → Rq(φt(z))

the parallel transport of ∇q along the curve {φτ (z) : 0 ⩽ τ ⩽ t}. We have a
smooth action of φqt on Rq, which is given by the horizontal lift of φt

φqt (z, ξ) = (φt(z), Pq,t(z) · ξ), (z, ξ) ∈ Rq.

We may lift the flow φt to a flow Φk,ℓ,qt on Eqk,ℓ, which is defined locally near K̃u

by

Φk,ℓ,qt (ω, u⊗ v ⊗ ξ)

=
(
φ̃t(ω), bt(ω) ·

[(
dφt(πG(ω))

−⊤)∧k (u)⊗ (dφ̃t(ω))
∧ℓ(v)⊗ Pq,t(z) · ξ

])
for any ω = (z, E) ∈ G, u⊗v⊗ξ ∈ Eqk,ℓ(ω) and t ∈ R. Following [4, §4.1], we deduce
that for any periodic orbit γ = (φτ (z))τ∈[0,τ(γ)], the trace

tr(Pq,γ) = tr(Pq,φ(z)) =

{
q if m(γ) = 0 mod q,

0 if m(γ) ̸= 0 mod q
(18)

is independent of z. Define the transfer operator

Φk,ℓ,q,∗−t : C∞(G, Eqk,ℓ) → C∞(G, Eqk,ℓ)

by

Φk,ℓ,q,∗−t u(ω) = Φk,ℓ,qt [u(φ̃−t(ω)], u ∈ C∞(G, Eqk,ℓ)

and denote by Pk,ℓ,q the generator of Φk,ℓ,q,∗−t . As above, we obtain the flat trace

tr♭(χ̃e−tPk,ℓ,q χ̃) = q
∑

γ̃,m(πG(γ̃))∈qN

τ ♯(γ)tr(αk,ℓγ̃ )δ(t− τ(γ))

|det(Id− P̃γ)|
, t > 0. (19)

We close this section with the following lemma.

Lemma 2.1 (Lemma 3.1, [4]). For any periodic orbit γ̃ of the flow φ̃t related to a
periodic orbit γ, we have

1

|det(Id− P̃γ)|

d−1∑
k=0

d2−d∑
ℓ=0

(−1)k+ℓtr(αk,ℓγ̃ ) = |det(Id− Pγ)|−1/2.
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3. Local trace formula. In this section, we apply the results of [7] and [17, §6.1]
for vector bundles. For simplicity, we will use the notations Ek,ℓ = E1

k,ℓ, Pk,ℓ =

Pk,ℓ,1, etc. For χ̃ ∈ C∞
c (Ṽu) such that χ̃ ≡ 1 near K̃u, by [7] and [17, §6.1], we

conclude that for any integer q ∈ N,

χ̃(−iPk,ℓ,q + s)−1χ̃

has a meromorphic continuation to C. Denote by Res (−iPk,ℓ,q) the set of poles of
this continuation. Then, for any constant β > 0, it was proved in [17, (6.3)] that
we have the upper bound

♯Res (−iPk,ℓ,q) ∩ {λ ∈ C, |Re λ− E| ≤ 1, Im λ ≥ −β} = O(Ed
2+d−1). (20)

In particular, there exists C > 0 depending on β such that

♯Res (−iPk,ℓ,q) ∩ {λ ∈ C, |λ| ≤ E, Im λ ≥ −β} ≤ CEd
2+d + C.

Notice that the power d2 + d − 1 comes from dimG. Next, for Res (−iPk,ℓ,q), we
obtain as in [17] the following local trace formula.

Theorem 3.1 (Theorem 1.5 and (6.5), [17]). For every A > 0 and any q ∈ N, there
exists a distribution F k,ℓ,qA ∈ S ′(R) supported in [0,∞) such that∑

µ∈Res (−iPk,ℓ,q),Im µ>−A

e−iµt + F k,ℓ,qA (t)

= q
∑

γ̃, m(γ)∈qN

τ ♯(γ)tr(αk,ℓγ̃ )δ(t− τ(γ))

|det(Id− P̃γ)|
, t > 0. (21k,ℓ,q)

Moreover, for any ϵ > 0 the Fourier-Laplace transform F̂ k,ℓ,qA (λ) of F k,ℓ,qA (t) is
holomorphic for Im λ < A− ϵ and we have the estimate

|F̂ k,ℓ,qA (λ)| = OA,ϵ,k,ℓ,q(1 + |λ|)2d
2+2d−1+ϵ, Im λ < A− ϵ. (22)

Here, γ = πG(γ̃).

As mentioned in [17, Section 6], the proof in [17, Section 4] with minor modifica-
tions works in the case of vector bundles. Combining the above result with Lemma
2.1, we obtain the following theorem.

Theorem 3.2. For every A > 0 and any ϵ > 0, there exists a distribution FA,q ∈
S ′(R) supported in [0,∞) with Fourier-Laplace transform F̂A,q(λ) holomorphic for
Im λ < A− ϵ such that

d∑
k=0

d2−d∑
ℓ=0

∑
µ∈Res (−iPk,ℓ,q),Im µ>−A

(−1)k+ℓe−iµt + FA,q(t)

= q
∑

γ, m(γ)∈qN

τ ♯(γ)δ(t− τ(γ))

|det(Id− Pγ)|1/2
, t > 0, (23q)

where F̂A,q(λ) =
∑d
k=0

∑d2−d
ℓ=0 (−1)k+ℓF̂ k,ℓ,qA (λ) satisfies estimate (22).

Choosing q = 1, we obtain a local trace formula for Neumann dynamical zeta
function ηN (s), introduced in Section 1. For the Dirichlet dynamical zeta function
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ηD(s) given in Section 1, we use representation (3) and applying (23q) with q = 1, 2,
we obtain the local trace formula

d∑
k=0

d2−d∑
ℓ=0

∑
µ∈Res (−iPk,ℓ,2),Im µ>−A

(−1)k+ℓe−iµt

−
d∑
k=0

d2−d∑
ℓ=0

∑
µ∈Res (−iPk,ℓ,1),Im µ>−A

(−1)k+ℓe−iµt + FA,2(t)− FA,1(t)

=
∑
γ

(−1)m(γ)τ ♯(γ)δ(t− τ(γ))

|det(Id− Pγ)|1/2
, t > 0. (24)

Some resonances µ ∈ Res (−iPk,ℓ,q), k + ℓ odd, q = 1, 2 may cancel with some
resonances ν ∈ Res (−iPk,ℓ,q), k + ℓ even, q = 1, 2, and a priori it is not clear if
the meromorphic continuation of dynamical zeta functions ηN (s) and ηD(s) have
an infinite number poles. Notice that all poles are simple and for fixed q, the
cancellations in (23q) could appear for terms with coefficients + and − related to
k + ℓ even and k + ℓ odd, respectively. On the other hand, in (24) we have more
possibilities for cancellations of poles.

4. Strip with infinite number poles.

Proof of Theorem 1.1. We will prove Theorem 1.1 for ηD since the argument for ηq
is completely similar and simpler. After cancellation, all poles µ on the left-hand
side of (24) satisfy Im µ ≤ α = max{0, a1}. To avoid confusion, in the following
we denote by µ̃ the poles µ in (24) which are not cancelled. Assume that for some
0 < δ < 1 and 0 ≤ k ≤ q, 0 ≤ ℓ ≤ q2 − q, q = 1, 2, we have estimates

NA,k,ℓ,q(r) = ♯{µ̃ ∈ Res (−iPk,ℓ,q) : |µ̃| ≤ r, −A < Im µ̃ ≤ α}
≤ P (A, k, ℓ, q, δ)rδ. (25)

We follow the argument in [18, Section 5] and [4, Appendix B] with some mod-
ifications. Let ρ ∈ C∞

0 (R,R+) be an even function with supp ρ ⊂ [−1, 1] such
that

ρ(t) > 1 if |t| ⩽ 1/2,

and

ρ̂(−λ) =
∫

eitλρ(t)dt ⩾ 0, λ ∈ R.

Let (ℓj)j∈N and (mj)j∈N be sequences of positive numbers such that ℓj ⩾ d0 =
mink ̸=m dist (Dk, Dm) > 0, mj ⩾ max{1, 1

d0
}, and let ℓj → ∞, mj → ∞ as j → ∞.

Set

ρj(t) = ρ(mj(t− ℓj)), t ∈ R,

and introduce the distribution FD ∈ S ′(R+) by

FD(t) =
∑
γ∈P

(−1)m(γ)τ ♯(γ)δ(t− τ(γ))

|det(I − Pγ)|1/2
. (26)

The following proposition was established by Ikawa.
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Proposition 4.1 (Prop. 2.3, [14]). Suppose that the function s 7→ ηD(s) cannot be
prolonged as an entire function of s. Then, there exists α0 > 0 such that for any
β > α0, we can find sequences (ℓj), (mj) with ℓj → ∞ as j → ∞ such that for all
j ⩾ 0, one has

eβℓj ⩽ mj ⩽ e2βℓj and |⟨FD, ρj⟩| ⩾ e−α0ℓj .

We apply the local trace formula (24) to the function ρj(t). For −A ≤ Im ζ ≤ α,
we have

|ρ̂j(ζ)| = m−1
j |ρ̂(m−1

j ζ)e−iℓjζ | ≤ CNm
−1
j eαℓj+m

−1
j max(α,A)(1 + |m−1

j ζ|)−N .

Then, for q = 1, 2 and −A ≤ Im µ̃ ≤ α, one obtains∣∣ ∑
Im µ̃>−A, µ̃∈Res (−iPk,ℓ,q)

⟨e−iµ̃t, ρj(t)⟩
∣∣

⩽ CN,Am
−1
j eαℓj

∫ ∞

0

(1 +m−1
j r)−NdNA,k,ℓ,q(r)

= −CN,Am−1
j eαℓj

∫ ∞

0

d

dr

(
(1 +m−1

j r)−N
)
NA,k,l,q(r)dr

⩽ BN,AP (A, k, ℓ, q, δ)m
−(1−δ)
j eαℓj

∫ ∞

0

(1 + y)−N−1yδdy

= ANP (A, k, ℓ, q, δ)m
−(1−δ)
j eαℓj ≤ DA,k,ℓ,q,δe

(−β(1−δ)+α)ℓj .

Next, applying (22), we have

⟨FA,q, ρj⟩ =
∫
R
F̂A,q(−ζ)ρ̂j(ζ)dζ =

∫
R+i(ϵ−A)

F̂A,q(−ζ)ρ̂j(ζ)dζ

and choosing M = 2d2 + 2d+ 1, we deduce

|⟨FA,q, ρj⟩| ≤ CM,A,qm
−1
j e(ϵ−A)ℓjem

−1
j max{A−ϵ,α}

×
∫
(1 + |ζ|)2d

2+2d−1+ϵ(1 + |m−1
j ζ|)−Mdζ

≤ DM,A,qe
(ϵ−A)ℓjm2d2+2d−1+ϵ

j ≤ DM,A,qe
(ϵ−A)ℓje2(2d

2+2d−1+ϵ)βℓj .

If the function ηD cannot be prolonged as an entire function, we may apply Propo-
sition 4.1. Taking together the above estimates and summing for 0 ≤ k ≤ d, 0 ≤
ℓ ≤ d2 − d and q = 1, 2, we get

DAe
(−β(1−δ)+α)ℓj + EAe

(ϵ−A)ℓje2(2d
2+2d−1+ϵ)βℓj ≥ e−α0ℓj .

Here, the constants DA and EA depend on A, but they are independent of ℓj .
Choose β > α0+α

1−δ and fix β and 0 < ϵ < 1. Next, choose

A > 2(2d2 + 2d− 1 + ϵ)β + ϵ+ α0.

Fixing A, for ℓj → ∞ we obtain a contradiction. This completes the proof of
Theorem 1.1 for ηD.

To deal with Res ηq, q ≥ 2, we choose a periodic ray γ0 with q reflections,
ℓj = jτ ♯(γ0) and mj = eβℓj . The existence of a periodic ray with q reflexions
follows from the fact that for every configuration ξ ∈ ΣA, there exists a unique ray
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γ(ξ) with successive reflexion points on ....∂Dj−1, ∂Dj , ∂Dj+1, ... (see the appendix
for the definition of ΣA and [12]). We apply the lower bound∣∣⟨ ∑

γ, m(γ)∈qN

τ ♯(γ)δ(t− τ(γ))

|det(Id− Pγ)|1/2
, ρj⟩

∣∣ ≥ ce−c0ℓj , ∀j ≥ 0

with c > 0, c0 > 0 independent of ℓj . For q = 1, we choose ℓj = jτ ♯(γ), mj = eβℓj

with some periodic ray γ and obtain the above estimate. Repeating the argument
for ηD, we prove (4).

Proof of Theorem 1.3. We follow the approach of F. Naud in [18, Appendix A]. Let
0 ≤ ρ ∈ C∞

0 (−1, 1) be the function introduced above. For ξ ∈ R and t > max{d0, 1},
introduce the function

ψt,ξ(s) = eiξsρ(s− t), ξ ∈ R.
In the proof we fix q = 1. We apply the trace formula (23q) to ψt,ξ. As above, denote
by µ̃ the poles which are not cancelled on the left-hand side of (23q). Assume that
for 0 ≤ k ≤ d and 0 ≤ ℓ ≤ d2 − d, we have

♯{µ̃ ∈ Res (−iPk,l) : −A− ϵ ≤ Im µ̃ ≤ α} = P (A, k, ℓ, ϵ) <∞. (27)

First, we have

|ψ̂t,ξ(ζ)| ≤ CNe
tIm ζ+|Im ζ|(1 + |Re ζ − ξ|)−N .

For −A ≤ Im µ̃ ≤ α and N = 1, the sum of terms involving poles µ̃ in (23q)

can be bounded by C1e
αt

1+|ξ| with constant C1 > 0 depending on P (A, k, ℓ, ϵ) and

exp(max{A,α}). Second, by using (22) for F̂A,1, one deduces

|⟨FA,1, ψt,ξ⟩| ≤ C2e
(ϵ−A)(t−1)(1 + |ξ|)2d

2+2d−1+ϵ.

Setting

S(t, ξ) =
∑
γ

eiξτ(γ)τ ♯(γ)ρ(τ(γ)− t)

|det(Id− Pγ)|1/2
,

we get

|S(t, ξ)| ≤ C1e
αt

1 + |ξ|
+ CAe

−(A−ϵ)t(1 + |ξ|)2d
2+2d−1+ϵ.

Now consider the Gaussian weight

G(t, σ) = σ1/2

∫
R
|S(t, ξ)|2e−σξ

2/2dξ, 0 < σ < 1.

The estimate for |S(t, ξ)| yields

|S(t, ξ)|2 ≤ 2C2
1e

2αt

(1 + |ξ|)2
+ 2C2

Ae
−2(A−ϵ)t(1 + |ξ|)2(2d

2+2d−1+ϵ)

and
G(t, σ) ≤ C ′

1σ
1/2e2αt + C ′

Aσ
−(2d2+2d−1+ϵ)e−2(A−ϵ)t. (28)

On the other hand, taking into account only the terms with τ(γ) = τ(γ′), we get

G(t, σ) =
√
2π

∑
γ

∑
γ′

τ ♯(γ)τ ♯(γ′)e−(τ(γ)−τ(γ′))2/2σρ(τ(γ)− t)ρ(τ(γ′)− t)

|det(Id− Pγ)|1/2|det(Id− Pγ′)|1/2

≥c
∑

t−1/2≤τ(γ)≤t+1/2

τ ♯(γ)|det(Id− Pγ)|−1
(29)

with c > 0 independent of t and σ.
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Set τ(γ) = Tγ , τ
♯(γ) = T ♯γ , aγ =

T ♯
γ

|det(Id−Pγ)| . Recall that b1 is the abscissa of

convergence of Dirichlet series (5) with q = 1.

We need the following lemma.

Lemma 4.2. Let ϵ > 0 be sufficiently small and b1 ̸= 0. Then there exists a sequence
tj → ∞ such that ∑

tj−1/2≤Tγ≤tj+1/2

aγ ≥ e(b1−2ϵ)tj . (30)

On the other hand, for b1 = 0 and small u > 0, there exists a sequence tj → ∞
such that we have estimate (30) with b1 replaced by −u/2
Proof. We consider three cases.

Case 1. b1 < 0.
Let the lengths of the periodic rays be arranged as follows:

T1 ≤ T2 ≤ ... ≤ Tn ≤ ....

It is well known (see for instance [5]) that

b1 = lim sup
n→∞

log |
∑
Tn≤Tγ

aγ |
Tn

.

We fix a small ϵ > 0 so that −δ = b1−3ϵ/2 < 0. There exists an increasing sequence
n1 < n2 < ... < nm < ... such that limnj = +∞ and

log |
∑
Tnj

≤Tγ
aγ |

Tnj

≥ b1 − ϵ. (31)

Choose n1 large so that

1 > e−δ + 2e−
ϵ
2Tnj , e

ϵ
2Tnj ≥ eδ/2 for j ≥ 1.

Set q1 = Tn1 , and write ∑
q1≤Tγ

aγ =

∞∑
k=0

∑
q1+k≤Tγ<q1+k+1

aγ .

Assume that we have the estimates∑
q1+k≤Tγ<q1+k+1

aγ ≤ e−δ(q1+k), ∀k ≥ 0. (32)

Then, ∑
q1≤Tγ

aγ ≤ e−δq1
∞∑
k=0

e−kδ = e−δq1
1

1− e−δ
<

1

2
e(−δ+ϵ/2)q1 .

Since −δ+ ϵ/2 = b1− ϵ, we obtain a contradiction with (31) for Tn1
. Consequently,

there exists at least one k1 ≥ 0 such that∑
q1+k1≤Tγ<q1+k1+1

aγ > e−δ(q1+k1). (33)

The series
∑
Tγ≥q1+k1+2 aγe

−λTγ has the same abscissa of convergence b1. We

repeat the procedure, choosing q2 ≥ q1 + k1 +2, and obtain the existence of k2 ≥ 0
such that ∑

q2+k2≤Tγ<q2+k2+1

aγ > e−δ(q2+k2).
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By iteration, we find two sequences {qj}, {kj} such that

qj+1 ≥ qj + kj + 2,

and a sequence of disjoint intervals

[qj + kj , qj + kj + 1], j = 1, 2, ...

so that ∑
qj+kj≤Tγ≤qj+kj+1

aγ > e−δ(qj+kj). (34)

The periods qj may change in the above procedure, but for simplicity we use the
same notation. Choosing tj = qj + kj + 1/2, we deduce (30).

Case 2. b1 > 0.
For b1, we have the representation

b1 = lim sup
n→∞

log |
∑
Tγ≤Tn

aγ |
Tn

.

We fix a small ϵ > 0 so that d1 = b1−3ϵ/2 > 0. There exists an increasing sequence

n1 < n2 < ... < nm < ... such that limnj = +∞, ed1

ed1−1
< e

ϵ
2 [Tn1 ], and

log |
∑
Tγ≤Tnj

aγ |

Tnj

≥ b1 − ϵ. (35)

We get ∑
Tγ≤Tn1

aγ ≤
[Tn1

]∑
k=0

∑
k<Tγ≤k+1

aγ .

Assume that for k = 0, ..., [Tn1 ] we have∑
k<Tγ≤k+1

aγ ≤ ed1k.

This implies

∑
Tγ≤Tn1

aγ ≤
[Tn1 ]∑
k=0

ed1k =
e([Tn1

]+1)d1 − 1

ed1 − 1
<
ed1e−

ϵ
2 [Tn1 ]

ed1 − 1
e(b1−ϵ)Tn1

and we obtain a contradiction with (35) and Tn1
. Thus, for some 0 ≤ k1 ≤ [Tn1

] we
have ∑

k1<Tγ≤k1+1

aγ ≥ e(b1−3ϵ/2)k1 .

Following this procedure, we construct a sequence of integers {kj}, kj+1 ≥ Tkj + 1
satisfying ∑

kj≤Tγ≤kj+1

aγ ≥ e(b1−3ϵ/2)kj

and choosing tj = kj + 1/2, we arrange (30) for large kj .

Case 3. b1 = 0.
For small u > 0, consider the Dirichlet series

ηu(s) =
∑
γ

T ♯γe
−(s+u)Tγ

|det(Id− Pγ)|
=

∑
γ

aγe
−uTγe−sTγ .
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This series has abscissa de convergence −u < 0 and we may apply the results of
Case 1. For a suitable sequence tj → ∞ depending on −u, we obtain the estimates

e−u(tj−1/2)
∑

tj−1/2≤Tγ≤tj+1/2

aγ ≥
∑

tj−1/2≤Tγ≤tj+1/2

aγe
−uTγ ≥ e(−u−2ϵ)tj .

Consequently, ∑
tj−1/2≤Tγ≤tj+1/2

aγ ≥ e−u/2e−2ϵtj > e(−u/2−2ϵ)tj .

Going back to the proof of Theorem 1.3, assume first that b1 ̸= 0. Therefore,
from (28) and (29) with t = tj , we obtain

c1σ
1/2e2αtj + c2σ

−(2d2+2d−1+ϵ)e−2(A−ϵ)tj ≥ e(b1−2ϵ)tj (36)

with constants c1, c2 > 0 independent of tj . Now choose

σ = c−2
1 e2(b1−3ϵ−2α)tj < 1.

Since

b1 − 3ϵ− 2α− (b1 − 2ϵ) + 2ϵ ≤ ϵ,

we have

e−ϵtj + c3e
−2(2d2+2d−1/2+ϵ)(b1−3ϵ−2α)tje−2(A−(1/2)ϵ)tj ≥ 1.

Taking

A = −(2d2 + 2d− 1/2)(b1 − 2α) + 3ϵ
(
2d2 + 2d− b1 − 2α

3
+ ϵ

)
and letting tj → +∞, we obtain a contradiction. Consequently, for some 0 ≤ k0 ≤
0, 0 ≤ ℓ0 ≤ d2 − d, setting ϵ̃ = 3ϵ(2d2 + 2d− b1−2α

3 + ϵ) + ϵ, we have

♯{µ̃ ∈ Res (−iPk0,l0) : Im µ̃ > (2d2 + 2d− 1/2)(b1 − 2α)− ϵ̃} = ∞.

This implies (6) with ϵ replaced by ϵ̃, observing that the poles µ̃ ∈ Res (−iPk0,ℓ0)

coincide with the poles λ̃ of the meromorphic continuation of η1(−iλ).
For b1 = 0, the estimates (30) hold with b1 replaced by −u/2. The argument in

the Case 1 implies

♯{µj ∈ Res η1 : Re µj > (2d2 + 2d− 1/2)(−2α)− (ϵ+ (2d2 + 2d− 1/2)u/2)} = ∞.

For small u, we arrange (2d2 +2d− 1/2)u/2 < ϵ, and since ϵ is arbitrary, we obtain
(6) with b1 = 0. This completes the proof of Theorem 1.3.

Appendix. Here, we prove Proposition 1.4.

Proof of Proposition 1.4. First,

det(Id− Pγ) = det(Id−DxφTγ
|Es(x))det(Id−DxφTγ

|Eu(x))

= det(DxφTγ |Eu(x))det(Id−DxφTγ |Es(x))det(Dxφ−Tγ |Eu(x) − Id), x ∈ γ.

Consequently,

|det(Id− Pγ)|−1 = |detDxφTγ |Eu(x)|
−1

×|det(Id−DxφTγ |Es(x))|
−1|det(Id−Dxφ−Tγ |Eu(x))|

−1.

For large Tγ we have

∥DxφTγ
|Es(x)∥ ≤ Ce−δTγ , ∥Dxφ−Tγ

|Eu(x)∥ ≤ Ce−δTγ , δ > 0,∀Tγ



ON THE NUMBER OF POLES 17

with constants C > 0, δ > 0 independent of Tγ since the flow φt is uniformly
hyperbolic (see [4, Appendix A]). Thus, for large Tγ we obtain

c1|detDxφTγ
|Eu(x)|

−1 ≤ |det(Id− Pγ)|−1 ≤ C1|detDxφTγ
|Eu(x)|

−1 (A.1)

with 0 < c1 < C1 independent of Tγ . We have

detDxφTγ
|Eu(x) = edγ , x ∈ γ

with

dγ = log
(
λ1,γ ...λd−1,γ) > 0,

where λj,γ are the eigenvalues of DxφTγ
|Eu(x) with modulus greater than 1. The

above estimate shows that the abscissa of convergence of the series∑
γ

T ♯γe
−sTγ+δγ , δγ = −dγ , Re s≫ 1

coincides with b1.
Our purpose is to express b1 by some dynamical characteristics related to sym-

bolic dynamics for several disjoint strictly convex obstacles. To do this, we recall
some well known results and we refer to [13], [12], [15] and [20] for more details.
Let A(i, j)i,j=1,...,r be an r × r matrix such that

A(i, j) =

{
1 if i ̸= j,

0 if i = j.

Introduce the spaces

ΣA = {ξ = {ξi}∞i=−∞, ξi ∈ {1, , ..., r}, A(ξi, ξi+1) = 1, ∀i ∈ Z},

Σ+
A = {ξ = {ξi}∞i=0, ξi ∈ {1, , ..., r}, A(ξi, ξj+1) = 1, ∀i ≥ 0}.

Given 0 < θ < 1, define a metric dθ on ΣA by dθ(ξ, η) = 0 if ξ = η and dθ(ξ, η) = θk

if ξ ̸= η, and let k be the maximal integer such that ξi = ηi for |i| < k. Similarly,
we define a metric d+θ on Σ+

A. Following [20, Chapter 1], for a function F : ΣA → C,
define

varkF = sup{|F (ξ)− F (η)| : ξi = ηi, |i| < k}
and for G : Σ+

A → C, define
varkG = sup{|G(ξ)−G(η)| : ξi = ηi, 0 ≤ i < k}.

Let Fθ(ΣA), Fθ(Σ
+
A) be the set of Lipschitz functions with respect to metrics dθ, d

+
θ ,

respectively, with norm

∥|f∥|θ = ∥f∥∞ + ∥f∥θ, ∥f∥θ = sup
k≥0

varkf

θk
.

Let σA be a shift on ΣA and Σ+
A given by

(σAξ)i = ξi+1, ∀i ∈ Z, (σAξ)i = ξi+1, ∀i ≥ 0,

respectively. For every ξ ∈ ΣA, there exists a unique reflecting ray γ(ξ) with suc-
cessive reflection points on ....∂Dj−1, ∂Dj , ∂Dj+1, ..., where the order of reflections
is determined by the sequence ξ (see [12]). If (Pj(ξ))

∞
j=−∞ are the reflexion points

of γ(ξ), we define the function

f(ξ) = ∥P0(ξ)− P1(ξ)∥.
It was proved in [12, Section 3] and [23, Section 3] that one can construct a sequence
of phase functions {φξ,j(x)}∞j=−∞ such that for each j, the phase φξ,j is smooth in
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a neighborhood Uξ,j of the segment [Pj(ξ), Pj+1(ξ)] in Rd \ D̊ and

(i) ∥∇φξ,j(x)∥ = 1 on Uξ,j ,

(ii) ∇φξ,j(Pj(ξ)) = Pj+1(ξ)−Pj(ξ)
∥Pj+1(ξ)−Pj(ξ)∥ ,

(iii) φξ,j = φξ,j+1 on ∂Dj+1 ∩ Uξ,j ∩ Uξ,j+1,

(iv) for each x ∈ Uξ,j , the surface Cξ,j(x) = {y ∈ Uξ,j : φξ,j(x) = φξ,j(y)} is
strictly convex with respect to its normal fields ∇φξ,j .

Denote by κj(ξ), j = 1, ..., d − 1, the principal curvatures at P0(ξ) of Cξ,0(x),
and introduce

g(ξ) = − log

d−1∏
j=1

(1 + f(ξ)κj(ξ)).

Then,
d−1∏
j=1

λj,γ(ξ) =

m(γ(ξ))∏
k=1

d−1∏
j=1

(1 + f(σkAξ)κj(σ
k
Aξ)).

It follows form the exponential instability of the billiard ball map (see [12], [26])
that f(ξ), g(ξ) become functions in Fθ(ΣA) with 0 < θ < 1 depending on the
geometry of D. We define

Snh(ξ) = h(ξ) + h(σAξ) + ...+ h(σn−1
A ξ)

and for a periodic ray γ(ξ), one obtains

Tγ(ξ) = Sm(γ(ξ))f(ξ), δγ(ξ) = Sm(γ(ξ))g(ξ).

Consider the zeta function

Z(s) =
( ∞∑
n=1

1

n

∑
σn
Aξ=ξ

eSn(−sf(ξ)+g(ξ))
)
, Re s≫ 1

and observe that

− d

ds
Z(s) =

∑
γ

T ♯γe
−sTγ+δγ .

Next, it is well known (see for instance [20, Chapter 1]) that given h ∈ Fθ(ΣA),

there exist functions h̃, χ ∈ Fθ1/2(ΣA) such that

h(ξ) = h̃(ξ) + χ(σAξ)− χ(ξ)

and h̃(ξ) ∈ Fθ1/2(Σ
+
A) depends only on the coordinates (ξ0, ξ1, ...). We denote this

property by h ∼ h̃. Choose f̃ ∼ f, g̃ ∼ g with f̃ , g̃ ∈ Fθ1/2(Σ
+
A) and write

Z(s) =
( ∞∑
n=1

1

n

∑
(σ+

A)nξ=ξ

eSn(−sf̃(ξ)+g̃(ξ))
)
.

The pressure P(F ) of a function F ∈ C(ΣA) is defined by

P(F ) = sup
ν

(
h(ν, σA) +

∫
ΣA

Fdν
)
,

where h(ν, σA) is the measure entropy of σA with respect to ν, and the supremum
is taken over all probability measures ν on ΣA invariant with respect to σA.
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Following [20, Chapter 6], consider the suspended flow σft (ξ, s) = (ξ, s + t) on
the space

ΣfA = {(ξ, s) : ξ ∈ ΣA, 0 ≤ s ≤ f(ξ)}

with identification (ξ, f(ξ)) ∼ (σA(ξ), 0). For a function G ∈ C(ΣfA), define the
pressure

P(G) = sup
νf

{h(νf , σft ) +
∫
Σf

A

Gdνf}, (A.2)

where h(νf , σ
f
t ) is the measure entropy, and the supremum is taken over all prob-

ability measures νf on ΣfA invariant with respect to σft . The suspended flow σft is
weakly mixing if there are no t ∈ R \ {0} with the property

t

2π
f(ξ) ∼M(ξ),

where M(ξ) ∈ C(ΣA : Z) has only integer values. According to [26, Lemma 5.2]

and [21, Lemma 1], the flow σft is weakly mixing.
Applying the results of [20, Chapter 6], we deduce that the abscissa of conver-

gence b1 of Z(s) is determined as the root of the equation

P(−sf̃ + g̃) = P(−sf + g) = 0

with respect to s. This root is unique since s→ P(−sf+g) is decreasing. Introduce
the function

G(ξ, y) = −1

2

d−1∑
j=1

κj(ξ)

1 + κj(ξ)y
. (A.3)

Clearly,

g(ξ) = 2

∫ f(ξ)

0

G(ξ, y)dy.

Then, [20, Proposition 6.1] says that P(−b1f + g) = 0 is equivalent to b1 = P(2G).
With the same argument, we show that a1 = P(G). This completes the proof of
Proposition 1.4.

It is easy to find a relation between b1 and P(g). Repeating the argument of [23,
Section 3], one obtains that there exist probability measures νg, ν0 on ΣA invariant
with respect to σA such that

P(g)∫
f(ξ)dνg

≤ b1 ≤ P(g)∫
f(ξ)dν0

.

Consequently, b1 has the same sign as P(g).
We close this appendix by proving that b1 = b2. Consider the zeta function

Z1(s) =
( ∞∑
n=1

1

n

∑
(σ+

A)nξ=ξ

eSn(−sf̃(ξ)+g̃(ξ)+iπ)
)

related to (9). Introduce the complex Ruelle operator

(Lsu)(ξ) =
∑
σ+
Aη=ξ

e(−sf̃+g̃+iπ)(η)u(η), u ∈ Fθ1/2(Σ
+
A).
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Then, for s = b1, this operator has no eigenvalues 1 since this implies that the
operator

(Lb1u)(ξ) =
∑
σ+
Aη=ξ

e(−b1f̃+g̃)(η)u(η)

will have eigenvalue (-1). This is impossible because from P(−b1f̃ + g̃) = 0, one
deduces that Lb1 has eigenvalue 1, and all other eigenvalues of Lb1 have modulus
strictly less than 1 (see [20, Theorem 2.2]). This shows that the function Z1(s)
is analytic for s = b1, hence (9) has the same property. Finally, similarly to (3),
we write the function (9) as a difference of two Dirichlet series with abscissas of
convergence b1 and b2. Therefore, the inequality b2 < b1 leads to a contradiction.
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